Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Amiodarone blocks calcium current in single guinea pig ventricular myocytes.

M Nishimura, C H Follmer and D H Singer
Journal of Pharmacology and Experimental Therapeutics November 1989, 251 (2) 650-659;
M Nishimura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C H Follmer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D H Singer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Ca++ current (lca) block by amiodarone and the underlying mechanisms thereof were investigated in guinea pig single ventricular myocytes using the single suction pipette whole cell voltage clamp method. The dose-response curve revealed a 1:1 stoichiometry for binding of amiodarone to its receptor with an apparent dissociation constant of 5.8 microM in the resting state. Amiodarone, 5 microM did not significantly alter the time course of ICa decay, but did shift the steady-state inactivation curve for lca in the hyperpolarizing direction by 9.2 +/- 3.1 mV. Development of block at depolarized potentials was voltage-dependent between -20 and 10 mV with time constants of 112 +/- 33 and 755 +/- 212 msec at 10 mV. In the presence of 0.2 microM amiodarone, recovery from inactivation was fitted by a double exponential most likely indicating rapid recovery of the drug-free Ca++ channels and slow recovery of the drug-associated Ca++ channels with time constants of 44 +/- 12 and 108 +/- 403 msec, respectively, at -80 mV. The proportion of the current recovering via the slow phase was 36 +/- 7%. By using this value, we estimated the dissociation constant in the inactivated state to be 0.36 microM. Amiodarone's marked use-dependent block of lca is explicable in terms of its high affinity for, and slow dissociation from, Ca++ channels in the inactivated state. These results suggest that amiodarone blocks lca in both the resting and inactivated states.(ABSTRACT TRUNCATED AT 250 WORDS)

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 251, Issue 2
1 Nov 1989
  • Table of Contents
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Amiodarone blocks calcium current in single guinea pig ventricular myocytes.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Amiodarone blocks calcium current in single guinea pig ventricular myocytes.

M Nishimura, C H Follmer and D H Singer
Journal of Pharmacology and Experimental Therapeutics November 1, 1989, 251 (2) 650-659;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Amiodarone blocks calcium current in single guinea pig ventricular myocytes.

M Nishimura, C H Follmer and D H Singer
Journal of Pharmacology and Experimental Therapeutics November 1, 1989, 251 (2) 650-659;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics