Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Ammonium ions cause relaxation of isolated canine arteries.

M Feletou, C T Harker, K Komori, J T Shepherd and P M Vanhoutte
Journal of Pharmacology and Experimental Therapeutics October 1989, 251 (1) 82-89;
M Feletou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C T Harker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Komori
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J T Shepherd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P M Vanhoutte
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Experiments were designed to determine the mechanism of action underlying relaxation of vascular smooth muscle induced by ammonium ions. In particular, the possibility that these ions might be an endothelium-derived relaxing factor was examined. Rings of large canine femoral, mesenteric and coronary arteries and of small arteries from the gracilis muscle were suspended in organ chambers for the recording of isometric force. Membrane potential was recorded with intracellular microelectrodes in smooth muscle cells from the mesenteric artery. Ammonium ions induced relaxation which were independent of the presence of the endothelium. The relaxations were not prevented by adrenergic, serotonergic, muscarinic and histaminic blockers, by scavengers of oxygen-derived radicals or by inhibitors of soluble guanylate cyclase. The relaxations were prevented by a decrease in extracellular calcium concentration and by inhibition of the Na+/K+ pump. The results are compatible with the hypothesis that the relaxation induced by ammonium ions is related to changes in intracellular pH and, at high concentration of these ions, possibly to activation of the Na+/K+ pump. Ammonium ions are neither the endothelium-derived relaxing factor which activates guanylate cyclase nor the factor that induces endothelium-derived hyperpolarization. Inasmuch as relatively low concentrations of the ion induce relaxation of small arteries of skeletal muscle, they could contribute to exercise hyperemia.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 251, Issue 1
1 Oct 1989
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ammonium ions cause relaxation of isolated canine arteries.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Ammonium ions cause relaxation of isolated canine arteries.

M Feletou, C T Harker, K Komori, J T Shepherd and P M Vanhoutte
Journal of Pharmacology and Experimental Therapeutics October 1, 1989, 251 (1) 82-89;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Ammonium ions cause relaxation of isolated canine arteries.

M Feletou, C T Harker, K Komori, J T Shepherd and P M Vanhoutte
Journal of Pharmacology and Experimental Therapeutics October 1, 1989, 251 (1) 82-89;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics