Per. V.25 1925

CONTENTS

NUMBER 1, FEBRUARY, 1925

I. Insulin and Liver Glycogen. By Carl F. Cori	1
II. The Pharmacological Action of Cryptopine. By Reginald St. A.	
	35
III. Potassium Chlorate: Its. Influence on the Blood Oxygen Binding	
Capacity (Hemoglobin Concentration), Its Rate of Excretion and	
Quantities Found in the Blood After Feeding. By Victor Ross	47
IV. The Chemo-Therapeutic Properties of a Substance with a Chain of	
Four Arsenic Atoms. By H. G. Barbour, G. B. Ridout and D. Claydon.	53
V. The Nephropathic Action of the Dicarboxylic Acids and their Deriva-	
tives. III. Acids of Six to Nine Carbons. By William C. Rose,	
	59
VI. The Nephropathic Action of the Dicarboxylic Acids and Their Deriva-	
tives. IV. Mucic Acid. By William C. Rose and Pauline S. Dimmitt.	65
VII. The Influence of Calcium and Potassium on the Response of the Iso-	
lated Frog Heart to Epinephrin. By William Salant, Henry Washeim,	
Jr., and Robert L. Johnston	75
Number 2, March, 1925	
VIII. Studies of Intoxication. I. The Action of Nitrous Oxide. By	
	91
IX. Studies of Intoxication. II. The Action of Acetylene. By Bessie	
M. Davidson 1	19
X. Scientific Proceedings of the American Society for Pharmacology and	
Experimental Therapeutics. Edited by E. D. Brown 1	37
NUMBER 3, APRIL, 1925	
XI. The Action of Quinine on Protein Metabolism, Respiratory Exchange and Heat Function. II. Respiratory Exchange and Heat Function.	
	175

XIII. A Quantitative Study of the Absorption and Excretion of the Anthelmintic Dose of Carbon Tetrachloride. By Herbert S. Wells........... 235

NUMBER 4, MAY, 1925

Animals. By Carl Voegtlin, Helen A. Dyer and C. S. Leonard..... 297

CONTENTS

XVII. The Mechanism of the Action of Antipyretic Drugs. By Thomas	
Stotesbury Githens	309
XVIII. On Some Effects of Arsonium, Stibonium, Phosphonium and Sulfo-	
nium Compounds on the Autonomic Nervous System. By Reid Hunt	
and R. R. Renshaw	315

NUMBER 5, JUNE, 1925

XIX. The Effect of the Administration of Desiccated Red Bone Marrow	
and Spleen on the Resistance of Erythrocytes to Hypotonic Saline	
Solutions in Dogs. By Chauncey D. Leake and Emmett F. Guy	357
XX. The Binding Power of Serum for Drugs Tested by a New In Vitro	
Method. By R. Beutner	365
XXI. Blood Chemistry in Acute Histamine Intoxication. By Hirotoshi	
Hashimoto	381
XXII. Further Studies on the Effect of Iodides on the Human Nitrogen	
Metabolism. By G. P. Grabfield and A. M. Prentiss	411

NUMBER 6, JULY, 1925

XXIII. Researches on Insulin. I. Is Insulin an Unstable Sulphur Com-	
pound? By John J. Abel and E. M. K. Geiling	423
XXIV. The Liberation of Adsorbed Substances from Proteins. A Function	
of the Bile Salts. By Sanford M. Rosenthal	449
XXV. Urinary Excretion of Tartrates Following Administration to Animals.	
By George Eric Simpson	459
XXVI. The Pharmacological Behavior of Malic Acid and its Salts. By	
Frank P. Underhill and George T. Pack	467

.

.

i

ILLUSTRATIONS

Toad heart perfused with cryptopine, 1:100,000 (Fig. 1a)	40
heart perfused with papaverine, 1:100,000 (Fig. 1b) Frog heart perfused with Ringer's solution, then with Ringer containing	40
1:50,000,000 epinephrin (Fig. 1) — heart perfused with Ringer's solution, then with Ringer containing	80
1:50,000,000 epinephrin (Fig. 2)	81
heart perfused with Ringer's solution, then with Ringer containing 1:50,000,000 epinephrin (Fig. 3)	83
heart perfused with Ringer's solution, then with Ringer containing 1:50,000,000 epinephrin (Fig. 4)	87
Graph showing effect of successive administrations of nitrous oxide on simple $(F_{i,j})$	08
reaction times (Fig. 1) — showing simple reaction times during recovery from mild (A), and	98 100
showing reaction times with choice under different concentrations of	100
nitrous oxide (Fig. 3) — showing the effect of 30 per cent nitrous oxide on muscular work after	102
showing the energy of rest (Fig. 4)	106
 of muscular movement as indicated by pricking experiments (Fig. 5) — showing improvement in accuracy of muscular movement during recovery from mild (A) and moderate (B) intoxication with nitrous 	110
oxide (Fig. 6) 	111
indicating the course of intoxication, with concentrations producing	116
unconsciousness, of nitrous oxide and acetylene respectively (Fig. 1) showing the effect of varying concentrations of acetylene on simple	120
reaction time (Fig. 2) 	123
	125
(Fig. 4)	126
showing comparative effects of 10 per cent acetylene and 10 per cent nitrous oxide on the accuracy of muscular movement (Fig. 5)	128
of times taken to type a sentence involving 72 movements during the inhalation of 25 per cent acetylene (Fig. 6)	130
showing reaction times with choice during successive administrations of 33 and 25 per cent acetylene respectively (Fig. 7)	134
Haldane's respiration apparatus used in the observations on animals (Fig. 6)	
(r.g. v)	100

.

ILLUSTRATIONS

Apparatus used for observing surface temperature (Fig. 7)	181
Ether anesthesia. Dog, 18 kgm. (Fig. 1)	
anesthesia. Dog, 18 kgm. (Fig. 2)	
anesthesia. Dog, 18 kgm. (Fig. 3)	
anesthesia. Dog, 6 kgm. (Fig. 4)	227
Urethane anesthesia. Rabbit, 2.5 kgm. (Fig. 5)	229
anesthesia. Rabbit, 2 kgm. (Fig. 6)	
Paraldehyde anesthesia. Dog, 9.5 kgm. (Fig. 7)	232
anesthesia. Dog, 9.5 kgm. (Fig. 8)	232
Composite curve of the absorption of 3 cc. of CCl ₄ from isolated intestinal	
loops of dogs (Fig. 1)	246
Diagram showing the effect of adding (a) alcohol in various concentrations,	
and (b) saturated solution of MgSO ₄ , on the absorption of 3 cc. of	
CCl ₄ from isolated intestinal loops of dogs (Fig. 2)	
of apparatus used to recover CCl ₄ from the expired air (Fig. 3)	260
Three experiments on dogs, showing the rapidity with which CCl ₄ is excreted	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	262
Two experiments on man showing the rapidity of excretion of CCl ₄ in the	
expired air following the administration of the drug into the upper	
intestinal tract (Fig. 5)	
Limnoria in ethyl alcohol (Fig. 1)	
in ethyl alcohol (Fig. 2)	
in ethyl alcohol (Fig. 3)	
Toad larvae in phenol (Fig. 4)	281
larvae in phenol (Fig. 5)	
larvae in cocaine-HCl (Fig. 6)	284
Artemia in HCl (Fig. 7)	
in $N/10 H_{2}PO_{4}$ (Fig. 8)	
Cat, chloralose (Fig. 1)	
chloralose (Fig. 2)	292
intravenous injection of 5 mgm. tetramethylphosphonium iodide	
(Fig. 1)	
intravenous injection of 0.5 mgm. trimethylsulfonium iodide (Fig. 2).	323
intravenous injection of 10 mgm. tetramethylphosphonium iodide	
(Fig. 3)	327
injection of 5 mgm. trimethylsulfonium iodide (Fig. 4)	327
Total urinary nitrogen of cases treated with lithium, sodium, magnesium,	
strontium, potassium and calcium iodides, "Lugol's" solution and	
Sajodin (Fig. 1)	413
Effect of calcium and potassium iodides on the distribution of values for the	
non-protein nitrogen of the blood (Fig. 2)	415
of sodium, lithium and strontium iodides on the blood and urine using	
the same notation as figure 2 (Fig. 3)	416
Two tubes containing 5 mgm. of high grade insulin treated for sulphur	
content (Fig. 1)	
tubes containing 5 mgm. of cystine treated for sulphur content (Fig. 2).	438
Influence of sodium malate upon the movement of a strip of cat's intestine	
(Fig. 1)	475