Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Mu- and delta-opioid receptor-mediated inhibition of adenylate cyclase activity stimulated by released endogenous dopamine in rat neostriatal slices; demonstration of potent delta-agonist activity of bremazocine.

M H Heijna, F Hogenboom, P S Portoghese, A H Mulder and A N Schoffelmeer
Journal of Pharmacology and Experimental Therapeutics June 1989, 249 (3) 864-868;
M H Heijna
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Hogenboom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P S Portoghese
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A H Mulder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A N Schoffelmeer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Rat neostriatal slices were superfused with medium containing 0.1 to 30 microM of the dopamine (DA)-releasing agent D-(+)-am-phetamine (AMPH) and the D-2 DA receptor antagonist (-)-sulpiride (10 microM) in the absence or presence of mu-, delta-, and kappa-selective opioids. AMPH dose-dependently enhanced the cyclic AMP production, as measured by its efflux from striatal slices, whereas simultaneous blockade of D-2 DA receptors by (-)-sulpiride strongly potentiated this effect. Both the mu-opioid receptor selective agonist [D-Ala2,MePhe4,Gly-ol5]enkephalin (0.01-3 microM) and the delta-opioid receptor selective agonist [D-Phe2-D-Pen5]enkephalin (DPDPE, 0.01-3 microM) inhibited the cyclic AMP efflux, stimulated by 10 microM AMPH in the presence of (-)-sulpiride, by 70 to 80%. The highly selective kappa-opioid receptor agonist U 50,488 (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrol-idinyl)- cyclohexyl]benzeneacetamide methanesulfonate hydrate) (0.01-1 microM) had no effect. In contrast, the purported kappa-opioid receptor agonist bremazocine (3-300 nM) inhibited the stimulated adenylate cyclase activity to a similar extent as did [D-Ala2-MePhe4,Gly-ol5]enkephalin and DPDPE. Moreover, the selective irreversible delta-antagonist fentanyl isothiocyanate reversed both the inhibition caused by DPDPE and that caused by bremazocine, whereas the kappa-selective antagonist norbinaltorphimine showed no differences in its potency to antagonize the inhibitory effects of the different opioid agonists. The results indicate that opioids, by activating mu- or delta-, but not kappa-opioid receptors may cause a profound inhibition of adenylate cyclase activity stimulated by activation of (postsynaptic) D-1 DA receptors upon the (presynaptic) release of DA.(ABSTRACT TRUNCATED AT 250 WORDS)

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 249, Issue 3
1 Jun 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mu- and delta-opioid receptor-mediated inhibition of adenylate cyclase activity stimulated by released endogenous dopamine in rat neostriatal slices; demonstration of potent delta-agonist activity of bremazocine.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Mu- and delta-opioid receptor-mediated inhibition of adenylate cyclase activity stimulated by released endogenous dopamine in rat neostriatal slices; demonstration of potent delta-agonist activity of bremazocine.

M H Heijna, F Hogenboom, P S Portoghese, A H Mulder and A N Schoffelmeer
Journal of Pharmacology and Experimental Therapeutics June 1, 1989, 249 (3) 864-868;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Mu- and delta-opioid receptor-mediated inhibition of adenylate cyclase activity stimulated by released endogenous dopamine in rat neostriatal slices; demonstration of potent delta-agonist activity of bremazocine.

M H Heijna, F Hogenboom, P S Portoghese, A H Mulder and A N Schoffelmeer
Journal of Pharmacology and Experimental Therapeutics June 1, 1989, 249 (3) 864-868;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics