Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Hepatotoxicity of menadione predominates in oxygen-rich zones of the liver lobule.

M Z Badr, P E Ganey, H Yoshihara, F C Kauffman and R G Thurman
Journal of Pharmacology and Experimental Therapeutics March 1989, 248 (3) 1317-1322;
M Z Badr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P E Ganey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Yoshihara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F C Kauffman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R G Thurman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This study was designed to investigate the mechanism of zone-specific hepatotoxicity due to menadione. Infusion of menadione (64-1000 microM) into perfused livers from fasted rats caused a concentration-dependent increase in O2 uptake. During perfusion in the anterograde direction, menadione (1 mM) increased O2 uptake from 115 +/- 11 to 142 +/- 10 mumol/g/hr within 30 min, followed by a decrease to 92 +/- 11 mumol/g/hr over the next 30 min. Trypan blue was taken up by 90% of cells in periportal regions reflecting irreversible cell death, whereas cells in pericentral areas were not damaged. When the hepatic O2 gradient was reversed by perfusing in the retrograde direction, menadione increased O2 uptake initially from 114 +/- 11 to 132 +/- 14 mumol/g/hr, followed by a decline to 51 +/- 12 mumol/g/hr, qualitatively similar to data obtained from perfusions in the natural, anterograde direction. During perfusions in the retrograde direction, however, 95% of cells in pericentral regions were stained with trypan blue whereas those in periportal areas were spared. O2 uptake in specific zones of the liver lobule was then measured with miniature O2 electrodes. When menadione was infused during anterograde perfusions, O2 uptake increased in O2-rich periportal areas from 128 +/- 6 to 156 +/- 12 mumol/g/hr, but was not altered in pericentral regions. Conversely, during perfusions in the retrograde direction, menadione did not affect O2 uptake in periportal areas, but stimulated uptake in O2-rich pericentral regions from 120 +/- 4 to 150 +/- 14 mumol/g/hr.(ABSTRACT TRUNCATED AT 250 WORDS)

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 248, Issue 3
1 Mar 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hepatotoxicity of menadione predominates in oxygen-rich zones of the liver lobule.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Hepatotoxicity of menadione predominates in oxygen-rich zones of the liver lobule.

M Z Badr, P E Ganey, H Yoshihara, F C Kauffman and R G Thurman
Journal of Pharmacology and Experimental Therapeutics March 1, 1989, 248 (3) 1317-1322;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Hepatotoxicity of menadione predominates in oxygen-rich zones of the liver lobule.

M Z Badr, P E Ganey, H Yoshihara, F C Kauffman and R G Thurman
Journal of Pharmacology and Experimental Therapeutics March 1, 1989, 248 (3) 1317-1322;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics