Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Intracerebroventricular morphine decreases descending inhibitions acting on lumbar dorsal horn neuronal activities related to pain in the rat.

D Bouhassira, L Villanueva and D Le Bars
Journal of Pharmacology and Experimental Therapeutics October 1988, 247 (1) 332-342;
D Bouhassira
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Villanueva
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Le Bars
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recordings were made from convergent neurons in the lumbar dorsal horn of the rat. These neurons were activated by both innocuous and noxious stimuli applied to their excitatory receptive fields located on the extremity of the ipsilateral hindpaw. Transcutaneous application of suprathreshold 2-msec square-wave pulses to the center of the receptive field resulted in responses to A- and C-fiber activation being observed: 27.2 +/- 2.2 (mean +/- S.E.M.) C-fiber latency spikes were evoked per stimulus. This type of response was inhibited by applying noxious conditioning stimuli to heterotopic areas of the body; in particular, immersing the tail in a 52 degrees C waterbath caused a 74.2 +/- 2.0% inhibition of the C-fiber evoked responses; such inhibitory processes have been termed diffuse noxious inhibitory controls (DNIC). The effects of microinjections of morphine (0.6-40 micrograms; 2 microliter) within the 3rd ventricle on both the unconditioned C-fiber-evoked responses and the inhibitory processes triggered from the tail were investigated in an attempt to answer two questions: 1) does i.c.v. morphine increase tonic descending inhibitory processes? and 2) what are the effects of i.c.v. morphine on descending inhibitory processes triggered phasically by noxious stimuli? The predominant effect of i.c.v. morphine on the C-fiber-evoked responses was a facilitation (17 of 26 cases). Such a facilitation was dose-related in the 0.6 to 40 microgram range and naloxone reversible; it plateaued from 20 min after the microinjection. No clear relationship was found between the number of C-fiber evoked responses in the control sequences and the subsequent effect of i.c.v. morphine. Intracerebroventricular morphine clearly reduced DNIC in the majority of cases (21 of 26). Such a reduction was dose-related in the 0.6 to 2.5 microgram range and naloxone reversible; it plateaued within 90 min of microinjection. No clear relationship was found between the changes in DNIC and either the number of C-fiber-evoked spikes in the control sequences or the changes in the C-fiber responses induced by i.c.v. morphine. Autoradiographic controls using [3H]morphine showed a labeling along the ventricle wall including the hypothalamus, the periaqueductal gray matter and the floor of the 4th ventricle, three regions which have been implicated in the control of nociceptive transmission at the spinal level. Diffusion from the ventricle wall was over a distance of 0.5 mm and was identical whether observed 20 or 95 min after the microinjections.(ABSTRACT TRUNCATED AT 400 WORDS)

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 247, Issue 1
1 Oct 1988
  • Table of Contents
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Intracerebroventricular morphine decreases descending inhibitions acting on lumbar dorsal horn neuronal activities related to pain in the rat.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Intracerebroventricular morphine decreases descending inhibitions acting on lumbar dorsal horn neuronal activities related to pain in the rat.

D Bouhassira, L Villanueva and D Le Bars
Journal of Pharmacology and Experimental Therapeutics October 1, 1988, 247 (1) 332-342;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Intracerebroventricular morphine decreases descending inhibitions acting on lumbar dorsal horn neuronal activities related to pain in the rat.

D Bouhassira, L Villanueva and D Le Bars
Journal of Pharmacology and Experimental Therapeutics October 1, 1988, 247 (1) 332-342;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics