Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Norepinephrine and potassium induced calcium translocation in rat vas deferens.

M A Khoyi, D P Westfall, I L Buxton, F Akhtar-Khavari, E Rezaei, M Salaices and P Sanchez-Garcia
Journal of Pharmacology and Experimental Therapeutics September 1988, 246 (3) 917-923;
M A Khoyi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D P Westfall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I L Buxton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Akhtar-Khavari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Rezaei
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Salaices
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Sanchez-Garcia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To understand calcium regulation in smooth muscle, we studied both potassium- and norepinephrine-mediated alterations in the movement of calcium in the smooth muscle of rat vas deferens. We employed 45Ca to measure agonist-mediated calcium influx and efflux, as well as tissue calcium content. In addition we labeled tissues with [3H]myoinositol to measure the effect of norepinephrine on inositol phosphate generation. Stimulation of the vas deferens with 50 mM potassium caused a rapid influx of 45Ca (6-fold). Norepinephrine stimulation, even at a concentration maximal for contraction of the tissue (1 mM), did not result in any alteration in 45Ca influx by itself but inhibited potassium-stimulated 45Ca influx (IC50 = 3 microM). This alpha receptor-mediated effect of norepinephrine was not diminished by either pretreatment with reserpine or adrenergic denervation. Studies of the efflux of 45Ca from vas deferens revealed that efflux was not affected by potassium but was significantly stimulated by norepinephrine. Alpha receptor stimulation of vas deferens smooth muscle caused a marked elevation in the appearance of inositol phosphates, particularly inositol trisphosphate, that was not dependent on extracellular calcium. We conclude that norepinephrine does not stimulate calcium influx in vas deferens smooth muscle but leads to the release of calcium from intracellular stores via formation of inositol trisphosphate and that the resulting increase in intracellular calcium may lead to inactivation of the potential-dependent calcium channel.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 246, Issue 3
1 Sep 1988
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Norepinephrine and potassium induced calcium translocation in rat vas deferens.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Norepinephrine and potassium induced calcium translocation in rat vas deferens.

M A Khoyi, D P Westfall, I L Buxton, F Akhtar-Khavari, E Rezaei, M Salaices and P Sanchez-Garcia
Journal of Pharmacology and Experimental Therapeutics September 1, 1988, 246 (3) 917-923;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Norepinephrine and potassium induced calcium translocation in rat vas deferens.

M A Khoyi, D P Westfall, I L Buxton, F Akhtar-Khavari, E Rezaei, M Salaices and P Sanchez-Garcia
Journal of Pharmacology and Experimental Therapeutics September 1, 1988, 246 (3) 917-923;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics