Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Species variation in toxication and detoxication of acetaminophen in vivo: a comparative study of biliary and urinary excretion of acetaminophen metabolites.

Z Gregus, C Madhu and C D Klaassen
Journal of Pharmacology and Experimental Therapeutics January 1988, 244 (1) 91-99;
Z Gregus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Madhu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C D Klaassen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Acetaminophen (AA) is converted to a toxic electrophile that may subsequently form a glutathione conjugate (AA-GS). In addition to the toxication pathway metabolites, which consist of AA-GS and its hydrolysis products (AA-cysteinylglycine, AA-cysteine and AA-mercapturate), detoxication pathway metabolites, such as AA-glucuronide and AA-sulfate, are also formed. In order to evaluate the role of these opposing pathways in the reported species variations in susceptibility to AA-induced liver injury, AA was administered to hamsters and mice, species which are susceptible to AA-induced liver injury, and to rats, rabbits and guinea pigs, species which are relatively resistant to AA-induced liver injury, and the biliary and urinary excretion of AA metabolites were measured simultaneously for 2 hr after administration of AA (1 mmol/kg i.v.). The AA-susceptible species excreted 27 to 42% of the dose as toxication pathway metabolites, whereas the resistant species excreted only 5 to 7% of the dose as toxication pathway metabolites. Most of the toxication pathway metabolites appeared in bile, where their composition reflected hepatic gamma-glutamyltranspeptidase activity; hamsters and mice (low gamma-glutamyltranspeptidase activity) excreted mainly AA-GS, whereas bile from rabbits and guinea pigs (high gamma-glutamyltranspeptidase activity) contained significant amounts of AA-GS hydrolysis products. Thus, the biliary excretion of AA-GS and its hydrolysis products may be used as an index of toxic activation of AA. The excretion of the detoxication pathway metabolites (AA-glucuronide and AA-sulfate) was 74, 62, 41, 27 and 12% of the dose in guinea pigs, rats, mice, rabbits and hamsters respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 244, Issue 1
1 Jan 1988
  • Table of Contents
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Species variation in toxication and detoxication of acetaminophen in vivo: a comparative study of biliary and urinary excretion of acetaminophen metabolites.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Species variation in toxication and detoxication of acetaminophen in vivo: a comparative study of biliary and urinary excretion of acetaminophen metabolites.

Z Gregus, C Madhu and C D Klaassen
Journal of Pharmacology and Experimental Therapeutics January 1, 1988, 244 (1) 91-99;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Species variation in toxication and detoxication of acetaminophen in vivo: a comparative study of biliary and urinary excretion of acetaminophen metabolites.

Z Gregus, C Madhu and C D Klaassen
Journal of Pharmacology and Experimental Therapeutics January 1, 1988, 244 (1) 91-99;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics