Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study endothelium-dependent and nitric oxide-elicited vascular smooth muscle relaxation.

L J Ignarro, R E Byrns, G M Buga, K S Wood and G Chaudhuri
Journal of Pharmacology and Experimental Therapeutics January 1988, 244 (1) 181-189;
L J Ignarro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R E Byrns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G M Buga
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K S Wood
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Chaudhuri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The principal objective of this study was to elucidate the influence of superoxide anion on both endothelium-dependent arterial relaxation elicited by acetylcholine and endothelium-independent arterial relaxation produced by nitric oxide (NO). Pyrogallol was used to generate superoxide in the oxygenated bathing medium, and superoxide dismutase was used to scavenge superoxide. Pyrogallol caused endothelium-dependent contractions of bovine intrapulmonary arterial and venous smooth muscle after precontraction of muscle by phenylephrine. Acetylcholine- and NO-elicited arterial relaxations were promptly converted to marked contractions upon addition of pyrogallol. Moreover, pyrogallol markedly inhibited the development of arterial relaxant responses to acetylcholine and NO. However, isoproterenol- and glyceryl trinitrate-elicited arterial relaxations were unaffected by pyrogallol. Both pyrogallol and oxyhemoglobin enhanced arterial contractile responsiveness to phenylephrine in an endothelium-dependent manner, whereas indomethacin was without effect. Similarly, both pyrogallol and oxyhemoglobin inhibited acetylcholine- and NO-elicited arterial cyclic GMP accumulation, whereas indomethacin was without effect. Uncontracted arterial rings maintained under tension showed endothelium-dependent contraction and decreased cyclic GMP levels in response to oxyhemoglobin but not pyrogallol. Superoxide dismutase enhanced arterial relaxation and cyclic GMP accumulation in response to both acetylcholine and NO. Using a bioassay superfusion cascade system in which intact perfused artery was the source of endothelium-derived relaxing factor (EDRF) and three endothelium-denuded arterial strips mounted in series served as the detector of EDRF, superfusion of strips with pyrogallol blocked relaxation caused by perfusion of artery with acetylcholine. Superoxide dismutase enhance the relaxations produced by arterial perfusion with acetylcholine and prevented the effects of pyrogallol.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 244, Issue 1
1 Jan 1988
  • Table of Contents
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study endothelium-dependent and nitric oxide-elicited vascular smooth muscle relaxation.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study endothelium-dependent and nitric oxide-elicited vascular smooth muscle relaxation.

L J Ignarro, R E Byrns, G M Buga, K S Wood and G Chaudhuri
Journal of Pharmacology and Experimental Therapeutics January 1, 1988, 244 (1) 181-189;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study endothelium-dependent and nitric oxide-elicited vascular smooth muscle relaxation.

L J Ignarro, R E Byrns, G M Buga, K S Wood and G Chaudhuri
Journal of Pharmacology and Experimental Therapeutics January 1, 1988, 244 (1) 181-189;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics