Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina.

J G Hensler, D J Cotterell and M L Dubocovich
Journal of Pharmacology and Experimental Therapeutics December 1987, 243 (3) 857-867;
J G Hensler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D J Cotterell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M L Dubocovich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent [3H]acetylcholine release from rabbit retina labeled in vitro with [3H]choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of [3H]acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of [3H]acetylcholine with the following order of potency: apomorphine greater than or equal to SKF(R)82526 greater than SKF 85174 greater than SKF(R)38393 greater than or equal to pergolide greater than or equal to dopamine (EC50 = 4.5 microM) greater than SKF(S)82526 greater than or equal to SKF(S)38393. Dopamine receptor antagonists inhibited the dopamine-evoked release of [3H]acetylcholine: SCH 23390 (IC50 = 1 nM) greater than (+)-butaclamol greater than or equal to cis-flupenthixol greater than fluphenazine greater than perphenazine greater than trans-flupenthixol greater than R-sulpiride. The potencies of dopamine receptor agonists and antagonists at the dopamine receptor mediating [3H]acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by [3H]SCH 23390, or as determined by adenylate cyclase activity. [3H]SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of [3H]SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate [3H]acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at [3H]SCH 23390 binding sites (r = 0.755, P greater than .05, n = 8). The potencies of antagonists to inhibit dopamine-evoked [3H]acetylcholine release were correlated with their potencies to inhibit the dopamine-stimulated adenylate cyclase (r = 0.759, P less than .05, n = 5) and with their affinities at [3H]SCH 23390 binding sites (r = 0.998, P less than .01, n = 7). We conclude that in rabbit retina dopamine evokes calcium-dependent [3H]acetylcholine release through activation of a site with the pharmacological characteristics of a D-1 dopamine receptor.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 243, Issue 3
1 Dec 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina.

J G Hensler, D J Cotterell and M L Dubocovich
Journal of Pharmacology and Experimental Therapeutics December 1, 1987, 243 (3) 857-867;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina.

J G Hensler, D J Cotterell and M L Dubocovich
Journal of Pharmacology and Experimental Therapeutics December 1, 1987, 243 (3) 857-867;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics