Abstract
The opioid receptor types involved in the mediation of enkephalin-induced electroencephalographic (EEG) seizures were studied in unanesthetized, freely moving rats. Four receptor-selective peptide ligands were evaluated for effectiveness in producing nonconvulsive EEG seizures after i.c.v. administration; these included the mu agonist, [D-Ala2-N-methyl-Phe4-Gly5-ol]enkephalin (DAGO), the mixed mu-delta agonist, [D-Ala2-D-Leu5]enkephalin (DADLE), and the selective delta agonists, [D-Pen2-D-Pen5]enkephalin and [D-Pen2-L-Pen5]enkephalin. Only DAGO and DADLE were found to produce EEG seizures, with DAGO being 9 times more potent than DADLE. DAGO produced a greater number of seizure episodes with a greater overall incidence compared with DADLE, reflecting its potent effect to elicit EEG seizure activity in these rats. Injections of [D-Pen2-D-Pen5]enkephalin or [D-Pen2-L-Pen5]enkephalin, even at the highest doses tested, failed to produce seizure activity. Behaviorally, the DAGO and DADLE EEG seizures were nonconvulsive but were temporally associated with episodic bursts of wet-dog shakes. The enkephalin-induced responses were extremely sensitive to antagonism by naloxone and completely blocked by pretreatment with the irreversible mu antagonist beta-funaltrexamine. The selective delta opioid receptor antagonist ICI 174,864 (N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH) was ineffective. The use of the most selective agonists and antagonists for mu and delta opioid receptors suggests that, in rats, enkephalin-induced EEG seizures are mediated exclusively by mu opioid receptors and not by delta opioid systems.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|