Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Receptor reserve at the alpha-2 adrenergic receptor in the rat cerebral cortex.

C H Adler, E Meller and M Goldstein
Journal of Pharmacology and Experimental Therapeutics February 1987, 240 (2) 508-515;
C H Adler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Meller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Goldstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an irreversible alpha-2 antagonist, was used to establish and quantitate the receptor reserve at the alpha-2 adrenergic autoreceptor mediating inhibition of [3H]norepinephrine ([3H]NE) release in rat cerebral cortical slices. EEDQ treatment had no effect on [3H]NE uptake or base-line release. Four hours after EEDQ treatment (0.8 mg/kg i.p.), the EC50 was shifted 7-fold to the right and there was a 21.5% decrease in the maximal response to the full alpha-2 agonist UK-14304. Using the double-reciprocal plot analysis, the equilibrium activation constant (KA) was calculated to be 1.41 +/- 0.8 microM. Similar analysis of alpha-2 autoreceptor response at various times after 1.6 mg/kg of EEDQ gave similar values for the KA. Therefore, evaluation of either the response of the remaining native receptors after partial irreversible inactivation or the response of newly synthesized receptors after nearly complete irreversible inactivation can be used to determine the KA of the receptor. Comparison of repopulation kinetics analyses for alpha-2 receptor response and estimated receptor number revealed that recovery of maximal response was much faster than actual receptor recovery. By examining the relationship between alpha-2 autoreceptor occupancy and response it was possible to determine that there is approximately a 60 to 70% receptor reserve; only 1.5% of the receptors need to be occupied by UK-14304 in order to obtain 50% of the maximal inhibition of [3H]NE release. The presence of a large receptor reserve must be taken into account when evaluating alpha-2 adrenergic autoreceptor regulation in the rat cerebral cortex.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 240, Issue 2
1 Feb 1987
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Receptor reserve at the alpha-2 adrenergic receptor in the rat cerebral cortex.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Receptor reserve at the alpha-2 adrenergic receptor in the rat cerebral cortex.

C H Adler, E Meller and M Goldstein
Journal of Pharmacology and Experimental Therapeutics February 1, 1987, 240 (2) 508-515;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Receptor reserve at the alpha-2 adrenergic receptor in the rat cerebral cortex.

C H Adler, E Meller and M Goldstein
Journal of Pharmacology and Experimental Therapeutics February 1, 1987, 240 (2) 508-515;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics