Abstract
The Ca dependence of contraction and myosin phosphorylation was investigated in canine tracheal smooth muscle stimulated with carbachol, K or serotonin. Previous studies of tracheal muscle showed carbachol concentration-response curves for contraction and myosin phosphorylation were superposable. In contrast, there was a striking difference in the Ca++ sensitivities of tension and myosin phosphorylation when Ca++ concentration-response curves were constructed in the presence of 10(-7) M carbachol. Significant phosphorylation (greater than 0.3 moles phosphate/mole 20,000 dalton myosin light chain) was observed in the absence of active tension. In the present study, carbachol (10(-7) and 10(-6) M) and serotonin (10(-5) M) also induced significant myosin phosphorylation in low Ca++ solutions (0-0.025 mM CaCl2) without proportional increases in tension. K+ depolarization in Ca++-free physiological salt solution (60 mM KCl, 10(-6) M atropine) yielded phosphorylation not significantly different from basal levels. All stimulants induced active stress after readmission of Ca. The Ca++ dependence curve for myosin phosphorylation in muscles stimulated with carbachol was shifted up and to the left of the force curve. Atropine (10(-6) M) significantly reduced phosphorylation induced by carbachol in Ca++-free solutions, as did 3 X 10(-6) M nifedipine and 10 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. Phorbol 12-myristate, 13-acetate or phorbol 12,13-dibutyrate did not increase basal phosphorylation or phosphorylation in low Ca++ solutions, suggesting that protein kinase C did not phosphorylate myosin in this case. Myosin phosphorylation under these conditions is not sufficient to support contraction, and is reduced by treatments that decrease Ca++ entry.(ABSTRACT TRUNCATED AT 250 WORDS)
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|