Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Multiple binding affinities of N-methylscopolamine to brain muscarinic acetylcholine receptors: differentiation from M1 and M2 receptor subtypes.

E E el-Fakahany, V Ramkumar and W S Lai
Journal of Pharmacology and Experimental Therapeutics August 1986, 238 (2) 554-563;
E E el-Fakahany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V Ramkumar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W S Lai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The properties of the specific binding of the muscarinic receptor ligands [3H]quinuclidinyl benzilate and N-[3H]methylscopolamine in rat brain were compared. The specific binding of both ligands was affected equally by heat, phospholipase A2 and trypsin. N-[3H]methylscopolamine labeled only a fraction of the total muscarinic receptors recognized by [3H]quinuclidinyl benzilate in different brain areas and in the heart. Evidence is presented that N-[3H]methylscopolamine, in fact, binds to a subpopulation of [3H]quinuclidinyl benzilate binding sites. The distribution of the high-affinity binding sites of N-[3H]methylscopolamine did not show a different tissue dependence as compared to the total receptor population, and did not parallel the distribution of the pirenzepine-sensitive M1 receptor subtype. Similarly, the affinity of both [3H]quinuclidinyl benzilate and N-[3H]methylscopolamine varied from one tissue to another by a maximum of 2-fold. Although (-)-quinuclidinyl benzilate competed for the specific binding of [3H]quinuclidinyl benzilate in different tissues according to the law of mass-action, N-methylscopolamine showed an anomalous interaction with two binding sites. The low-affinity binding sites of N-methylscopolamine showed saturability of [3H]quinuclidinyl benzilate binding and stereoselectivity. When the binding characteristics of these N-methylscopolamine-inaccessible binding sites of [3H]quinuclidinyl benzilate in the brain were investigated further, it was found that N-methylscopolamine bound exclusively with a single low affinity, whereas pirenzepine still interacted with two receptor populations incorporated in these sites. It is concluded from several lines of evidence that the heterogeneity of binding of N-methylscopolamine to muscarinic receptors does not represent an interaction with the muscarinic M1 and M2 receptor subtypes defined by pirenzepine. Thus, the unique binding profile of pirenzepine to muscarinic receptors cannot be explained merely on the basis of its hydrophilic nature.

PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 238, Issue 2
1 Aug 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Multiple binding affinities of N-methylscopolamine to brain muscarinic acetylcholine receptors: differentiation from M1 and M2 receptor subtypes.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Multiple binding affinities of N-methylscopolamine to brain muscarinic acetylcholine receptors: differentiation from M1 and M2 receptor subtypes.

E E el-Fakahany, V Ramkumar and W S Lai
Journal of Pharmacology and Experimental Therapeutics August 1, 1986, 238 (2) 554-563;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Multiple binding affinities of N-methylscopolamine to brain muscarinic acetylcholine receptors: differentiation from M1 and M2 receptor subtypes.

E E el-Fakahany, V Ramkumar and W S Lai
Journal of Pharmacology and Experimental Therapeutics August 1, 1986, 238 (2) 554-563;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics