Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Mediator release from human lung under conditions of reduced oxygen tension.

S P Peters, L M Lichtenstein and N F Adkinson Jr
Journal of Pharmacology and Experimental Therapeutics July 1986, 238 (1) 8-13;
S P Peters
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L M Lichtenstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N F Adkinson Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although the mechanism underlying hypoxic pulmonary vasoconstriction remains undefined, various reports have suggested that mast cells and cell-derived mediators may be important in the production of this phenomenon. We investigated the effect of reducing oxygen tension on the release from human lung fragments of the mast cell-derived mediators histamine, prostaglandin (PG) D2 and peptide leukotrienes, as well as the release of the largely non-mast cell-derived mediators PGE2, PGF2 alpha, prostacyclin metabolite (6-keto-PGF1 alpha) and the thromboxane A2 metabolite (thromboxane B2). The effect of reducing oxygen tension on both basal mediator release and release triggered by goat antihuman immunoglobulin E was studied. Reducing pO2 of buffer in which lung fragments were placed from 161 to 54 mm Hg resulted in no spontaneous release of histamine, PGD2 or peptide leukotrienes. However, hypoxia had a marked effect on mediator release triggered by goat antihuman immunoglobulin E. Although net histamine release was relatively unaffected (control 13.9 +/- 2.7%, hypoxic 12.7 +/- 2.1%), hypoxic treatment resulted in an 89% inhibition of PGD2 release (control 47.7 +/- 17.4 ng/g of lung, hypoxic 5.26 +/- 1.91 ng/g of lung) and an 81% inhibition of peptide leukotriene release (control 22.5 +/- 7.6 ng/g of lung, hypoxic 4.37 +/- 2.4 ng/g of lung). Similar inhibition was seen for non-mast cell-derived mediators, including PGF2 alpha, prostacyclin metabolite and thromboxane B2, and probably for PGE2. We conclude that hypoxic treatment of human lung fragments in vitro results in no spontaneous release of preformed or newly formed mediators but that it markedly alters mediator release after goat antihuman immunoglobulin E triggering.(ABSTRACT TRUNCATED AT 250 WORDS)

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 238, Issue 1
1 Jul 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mediator release from human lung under conditions of reduced oxygen tension.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Mediator release from human lung under conditions of reduced oxygen tension.

S P Peters, L M Lichtenstein and N F Adkinson
Journal of Pharmacology and Experimental Therapeutics July 1, 1986, 238 (1) 8-13;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Mediator release from human lung under conditions of reduced oxygen tension.

S P Peters, L M Lichtenstein and N F Adkinson
Journal of Pharmacology and Experimental Therapeutics July 1, 1986, 238 (1) 8-13;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics