Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Amrinone effects on electromechanical coupling and depolarization-induced automaticity in ventricular muscle of guinea pigs and ferrets.

C O Malécot, P Arlock and B G Katzung
Journal of Pharmacology and Experimental Therapeutics January 1985, 232 (1) 10-19;
C O Malécot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Arlock
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B G Katzung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The effects of the cardiotonic agent, amrinone (0.05-4 mM), on electrical and mechanical activities of ferret and guinea-pig papillary muscles were studied using current and voltage clamp (single sucrose gap) techniques. In current clamp studies, amrinone increased, in a dose-dependent manner, contractile force elicited by action potential in both species. Depolarization-induced automaticity was facilitated in ferret muscles at all maximum diastolic potentials between -70 and -15 mV. Facilitation of automaticity in guinea-pig muscles occurred only at potentials more negative than -35 mV and was suppressed at more positive potentials. Cimetidine (10 microM) partially reversed the effects of amrinone on automaticity in both species. In voltage clamp studies, amrinone increased the slow inward current. Steady-state outward current was increased in guinea-pig but not in ferret muscles. A dual effect of amrinone on tension was observed. Amrinone was found to increase phasic tension of ferret papillary muscles only for depolarizations lasting less than 250 to 300 msec. For longer depolarizations, amrinone decreased the phasic tension (in a dose-dependent manner), whereas the tonic tension was not modified. The decrease as well as the increase in tension was associated with an increase of the slow inward current. The results suggest that amrinone may be arrhythmogenic and may have an intracellular action at the sarcoplasmic reticulum level (partial inhibition) in addition to its action on the calcium current.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 232, Issue 1
1 Jan 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Amrinone effects on electromechanical coupling and depolarization-induced automaticity in ventricular muscle of guinea pigs and ferrets.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Amrinone effects on electromechanical coupling and depolarization-induced automaticity in ventricular muscle of guinea pigs and ferrets.

C O Malécot, P Arlock and B G Katzung
Journal of Pharmacology and Experimental Therapeutics January 1, 1985, 232 (1) 10-19;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Amrinone effects on electromechanical coupling and depolarization-induced automaticity in ventricular muscle of guinea pigs and ferrets.

C O Malécot, P Arlock and B G Katzung
Journal of Pharmacology and Experimental Therapeutics January 1, 1985, 232 (1) 10-19;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics