Abstract
Effects of prolonged in vivo infusion of isoproterenol on acute cardiovascular responses to isoproterenol, dopamine and tyramine were studied in pithed rats. Isoproterenol infusion resulted in a significant decrease in control values for maximum left ventricular dP/dt; heart rate and left ventricular systolic blood pressure were not altered. This treatment also depleted both atrial and ventricular stores of norepinephrine and caused cardiac hypertrophy. Isoproterenol infusion resulted in a desensitization of drug-induced cardiovascular responses. The acute in vivo effects of isoproterenol on maximum left ventricular dP/dt, heart rate and left ventricular systolic blood pressure responses to isoproterenol were severely attenuated. The ED50 for maximum left ventricular dP/dt was increased 36-fold and maximal responses were reduced by half; changes in heart rate occurred in a parallel fashion. By contrast, ED50 values for inotropic responses to tyramine and dopamine were increased 14- and 4-fold, respectively, whereas increases in heart rate were blunted. Tyramine and dopamine-mediated increases in heart rate were completely attenuated by desensitization; chronotropic effects were again evident after pretreatment with the selective alpha-1 blocker prazosin. In addition, prazosin blocked the inotropic responses to tyramine and dopamine after desensitization and this antagonism was only slightly enhanced by addition of propranolol (prazosin + propranolol); propranolol alone was ineffective. These results are consistent with the down-regulation of beta adrenoceptors after prolonged exposure to catecholamines and indicate that under such conditions the alpha-mediated cardiovascular responses may be unmasked. Compared to pure beta agonists, agents with a degree of alpha-1 activity might be superior inotropes in heart failure patients who characteristically present with depleted stores of myocardial norepinephrine and minimal beta adrenoceptor reserve.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|