Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Production of prostaglandins E2 and F2 alpha in the freshwater mussel Ligumia subrostrata: relation to sodium transport.

D G Saintsing, D H Hwang and T H Dietz
Journal of Pharmacology and Experimental Therapeutics August 1983, 226 (2) 455-461;
D G Saintsing
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D H Hwang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T H Dietz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Pharmacological experiments indicate that prostaglandins (PGs) have a role in the control of sodium regulation in freshwater mussels and the mechanism may be linked to cyclic AMP and serotonin. To test this hypothesis we used radioimmunoassay to investigate the ability of freshwater mussels to synthesize PGs. The levels of precursor fatty acids were determined in a gas-liquid chromatograph. Arachidonic acid (precursor to the diene PGs) was the major fatty acid component of total lipids in the gill and accounted for 14% of the total. In addition, gill homogenates synthesize PG-like material from [3H]arachidonic acid. Material corresponding to PGE2 and PGF2 alpha were identified on thin-layer radiochromatograms. These data indicate that gills (the primary site of Na transport) can produce PGs. The presence of PGs in freshwater mussels was verified by radioimmunoassay of blood. Both PGE2 and PGF2 alpha were identified using highly specific antisera. The concentrations of both PGs was significantly reduced when the mussels were injected with inhibitors of phospholipase A2 or cyclooxygenase before sampling blood. Stimulation of Na transport by serotonin and cyclic AMP results in a depression of blood PGE2 with no effect on circulating PGF2 alpha. PGE2 levels are inversely correlated with net Na flux. These data indicate endogenous PGE2 negatively modulated Na transport and PGE2 levels are regulated by a serotonin-cyclic AMP mediated system.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 226, Issue 2
1 Aug 1983
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Production of prostaglandins E2 and F2 alpha in the freshwater mussel Ligumia subrostrata: relation to sodium transport.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Production of prostaglandins E2 and F2 alpha in the freshwater mussel Ligumia subrostrata: relation to sodium transport.

D G Saintsing, D H Hwang and T H Dietz
Journal of Pharmacology and Experimental Therapeutics August 1, 1983, 226 (2) 455-461;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Production of prostaglandins E2 and F2 alpha in the freshwater mussel Ligumia subrostrata: relation to sodium transport.

D G Saintsing, D H Hwang and T H Dietz
Journal of Pharmacology and Experimental Therapeutics August 1, 1983, 226 (2) 455-461;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics