Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Evidence for the presynaptic localization of a high affinity opiate binding site on dopamine neurons in the pedal ganglia of Mytilus edulis (Bivalvia).

G B Stefano, R S Zukin and R M Kream
Journal of Pharmacology and Experimental Therapeutics September 1982, 222 (3) 759-764;
G B Stefano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R S Zukin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R M Kream
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Considerable evidence has demonstrated an interrelationship between the enkephalinergic and dopaminergic systems in both the mammalian and invertebrate nervous systems. We have described recently the presence of two classes of high affinity opiate binding sites in the nervous tissue of the marine mollusc Mytilus edulis. In order to examine the physiological role of these high affinity opiate sites, M. edulis pedal ganglia (Pg) were treated with the selective neurotoxin 6-hydroxydopamine (1 micrograms/animal, applied topically to the intact Pg); animals were sacrificed 5 days after treatment. The dopamine content of the Pg from lesioned animals was reduced to 33% relative to that of Pg from control animals. Neither serotonin nor norepinephrine levels were reduced. Fluorescent micrographs of formaldehyde-treated Pg from both lesioned and control animals revealed that the neurotoxic substance accumulates in the synaptically rich neuropil and not in the cortex of the Pg. Thus, the partial reduction in dopamine levels may reflect nearly total loss of dopamine in terminals with essentially no change in the nerve cell bodies. High affinity binding of the potent opioid peptide 125I-labeled FK 33-824 (2 nM) was reduced by 81% and low affinity binding (10 nM peptide) by 43% in Pg from lesioned animals relative to that in control tissue. In addition, D-Ala2-Met5-enkephalin, beta-endorphin and etorphine failed to change dopamine levels in lesioned animals. Together, these results suggest that the high affinity opiate binding sites that mediate alteration in dopamine levels are on dopaminergic presynaptic terminals.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 222, Issue 3
1 Sep 1982
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evidence for the presynaptic localization of a high affinity opiate binding site on dopamine neurons in the pedal ganglia of Mytilus edulis (Bivalvia).
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Evidence for the presynaptic localization of a high affinity opiate binding site on dopamine neurons in the pedal ganglia of Mytilus edulis (Bivalvia).

G B Stefano, R S Zukin and R M Kream
Journal of Pharmacology and Experimental Therapeutics September 1, 1982, 222 (3) 759-764;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Evidence for the presynaptic localization of a high affinity opiate binding site on dopamine neurons in the pedal ganglia of Mytilus edulis (Bivalvia).

G B Stefano, R S Zukin and R M Kream
Journal of Pharmacology and Experimental Therapeutics September 1, 1982, 222 (3) 759-764;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics