Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Postsynaptic inhibition of neuromuscular transmission by trifluoperazine.

K C Cheng, J J Lambert, E G Henderson, H Smilowitz and P M Epstein
Journal of Pharmacology and Experimental Therapeutics April 1981, 217 (1) 44-50;
K C Cheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J J Lambert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E G Henderson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Smilowitz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P M Epstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The effect of trifluoperazine (TFP) on neuromuscular transmission was investigated on chick biventer cervicis and frog cutaneous pectoris and sartorius nerve-muscles. In the chick, TFP inhibited indirectly elicited twitches in a frequency-dependent manner. Inhibition was much more rapid at higher frequencies of stimulation. Directly elicited twitches, KCl contracture and action potentials of desheathed frog sciatic nerve and sartorius muscles were unaffected by TFP, suggesting an action of TFP on neuromuscular transmission. TFP depressed end plate potential amplitude and miniature end plate potential (MEPP) amplitude without affecting MEPP frequency. When MEPP frequency was increased by high Na+ Ringer, depression of MEPP amplitude was much more rapid. Similarly, at high frequencies of stimulation (100 Hz), TFP rapidly depressed end plate currents. TFP inhibited contractures induced by bath-applied acetylcholine (ACh); depressed ACh potentials produced by iontophoretically applied ACh; decreased ionic current and time constant of decay of end-plate currents of transected muscle; and inhibited [alpha-125I]bungarotoxin binding to ACh receptor. These data suggest that TFP acts postsynaptically in a frequency-dependent manner to inhibit neuromuscular transmission. Based on recent evidence that TFP is a potent antagonist of calmodulin and that calmodulin is localized mainly to postsynaptic regions, we postulate that the postsynaptic inhibitory actions of TFP may be mediated through antagonism of calmodulin, which in turn may regulate ACh receptor function.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 217, Issue 1
1 Apr 1981
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Postsynaptic inhibition of neuromuscular transmission by trifluoperazine.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Postsynaptic inhibition of neuromuscular transmission by trifluoperazine.

K C Cheng, J J Lambert, E G Henderson, H Smilowitz and P M Epstein
Journal of Pharmacology and Experimental Therapeutics April 1, 1981, 217 (1) 44-50;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Postsynaptic inhibition of neuromuscular transmission by trifluoperazine.

K C Cheng, J J Lambert, E G Henderson, H Smilowitz and P M Epstein
Journal of Pharmacology and Experimental Therapeutics April 1, 1981, 217 (1) 44-50;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics