Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

Effects of divalent cations, cation chelators and an ionophore on morphine analgesia and tolerance.

R A Harris, H H Loh and E L Way
Journal of Pharmacology and Experimental Therapeutics December 1975, 195 (3) 488-498;
R A Harris
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H H Loh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E L Way
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The analgesic effect of morphine was antagonized in mice by intracerebroventricular injection of Ca++, Mg++ and Mn++ and was potentiated by ethylene glycol tetraacetic acid but was not altered by Sr++, Ba++, Ni++, Hg++, Cd++ or ethylenediamine tetraacetic acid. The antagonistic effect of Ca++ was not altered by pretreatment with pargyline or 6-hydroxydopamine indicating that altered release of catecholamines or serotonin was not involved in this action of Ca++. Induction of morphine tolerance by pellet implantation also did not alter the antagonistic effect of Ca++. The antagonistic effects of Ca++ and naloxone were additive in both nontolerant and tolerant animals and the apparent affinity of naloxone for its receptors, as estimated by in vivo pA2 determinations, was not altered by Ca++. However, the ionophore X537A was found to increase greatly the narcotic antagonist effect of a low dose of Ca++ although the ionophore alone did not alter the effects of morphine. This indicates that Ca"++ must penetrate cell membranes in order to reduce the analgesic effects of morphine. These findings indicate the importance of Ca++ localization in the actions of narcotic agonists and antagonists.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 195, Issue 3
1 Dec 1975
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effects of divalent cations, cation chelators and an ionophore on morphine analgesia and tolerance.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Effects of divalent cations, cation chelators and an ionophore on morphine analgesia and tolerance.

R A Harris, H H Loh and E L Way
Journal of Pharmacology and Experimental Therapeutics December 1, 1975, 195 (3) 488-498;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Effects of divalent cations, cation chelators and an ionophore on morphine analgesia and tolerance.

R A Harris, H H Loh and E L Way
Journal of Pharmacology and Experimental Therapeutics December 1, 1975, 195 (3) 488-498;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics