Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Abstract

The pharmacology of batrachotoxin. VII. Structure-activity relationships and the effects of pH.

J E Warnick, E X Albuquerque, R Onur, S E Jansson, J Daly, T Tokuyama and B Witkop
Journal of Pharmacology and Experimental Therapeutics April 1975, 193 (1) 232-245;
J E Warnick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E X Albuquerque
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Onur
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S E Jansson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Daly
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Tokuyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Witkop
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The effects of the depolarizing agent, batrachotoxin (BTX), and of various analogs were studied on rat phrenic nerve-diaphragm muscle preparations at 37 degrees C. The structural modifications of BTX included: 1) replacement of the 20alpha-pyrrole-3-carboxylate moiety; 2) alterations of substituents on the pyrrole moiety; 3) clevage of the 3alpha, 9alpha-hemiketal linkage; and 4) quaternization of the tertiary nitrogen of BTX. All of the compounds except batrachotoxinin A (BTX-A), which lacks the 20alpha-substituent, depolarized the postsynaptic membrane, transiently increased the frequency of spontaneous transmitter release to 400 to 600 sec- minus 1 and finally produced blockade of the directly and indirectly elicited muscle twitches. Of the compounds tested, only BTX-A potentiated the muscle twitches. The concentration which elicits a 50% depolarization of the muscle membrane in 1 hour was determined for all the compounds except for BTX-A and for dihydrobatrachotoxin which lacks the 3alpha, 9alpha-hemiketal linkage; these two analogs never depolarized the postsynaptic membrane by more than 10 to 15%. BTX, the 20alpha-2, 4, 5-trimethylpyrrole-3-carboxylate of BTX-A and the 20alpha-ester of BTX-A with 2-ethyl-4-methylpyrrole-3-carboxylic acid (homobatrachotoxin) were the three most potent toxins with doses of 4.5, 12 and 18 times 10- minus 9 M eliciting a 50% membrane depolarization in 1 hour. The quaternary derivative of BTX, the 20alpha-4, 5-dimethylpyrrole-3-carboxylate of BTX-A and 20alpha-2,4-dimethyl-5-acetylpyrrole-3-carboxylate of BTX-A were 24-, 65- and 110-fold less potent than BTX as depolarizing agents, whereas the 20alpha-p-bromobenzoate of BTX-A was 220-fold less potent. Each of these derivatives had the ability to increase sodium permeability since the increase in spontaneous miniature end-plate potential frequency and membrane depolarization were reversed by tetrodotoxin or by reducing the external sodium concentration. BTX was found to be more effective at alkaline pH (pH 9.0), at which it exists almost entirely in the un-ionized form, than at physiological or acidic pH(6.0). The results indicate that the analogs of BTX act by a mechanism similar to that of the parent compound, but that their potency differs and certain compounds may have a more selective action on either the pre- or postsynaptic membrane. For maximal depolarizing activity, a substituted pyrrole moiety is necessary at the 20alpha-position of BTX-A and 3alpha, 9alpha-hemiketal linkage must remain intact providing rigidity for the pentacyclic steroid nucleus.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 193, Issue 1
1 Apr 1975
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The pharmacology of batrachotoxin. VII. Structure-activity relationships and the effects of pH.
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

The pharmacology of batrachotoxin. VII. Structure-activity relationships and the effects of pH.

J E Warnick, E X Albuquerque, R Onur, S E Jansson, J Daly, T Tokuyama and B Witkop
Journal of Pharmacology and Experimental Therapeutics April 1, 1975, 193 (1) 232-245;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

The pharmacology of batrachotoxin. VII. Structure-activity relationships and the effects of pH.

J E Warnick, E X Albuquerque, R Onur, S E Jansson, J Daly, T Tokuyama and B Witkop
Journal of Pharmacology and Experimental Therapeutics April 1, 1975, 193 (1) 232-245;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics