Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

THE EFFECTS OF GERMINE-3-ACETATE ON NEUROMUSCULAR TRANSMISSION

Peter B. Detwiler
Journal of Pharmacology and Experimental Therapeutics February 1972, 180 (2) 244-254;
Peter B. Detwiler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Germine-3-acetate (GMA) is a veratrum derivative that causes repetitive nerve and muscle activity, increases skeletal muscle contraction strength, antagonizes neuromuscular block by d-tubocurarine and succinylcholine and has been reported to be effective in the treatment of myasthenia gravis. The effects of GMA on neuromuscular transmission were studied in the in vitro frog sartorius nerve muscle preparation. GMA has no effect on unstimulated preparations but causes the response evoked by a single nerve or muscle stimulus to become repetitive. Concentrations of GMA which cause repetitive nerve and muscle activity (1-20 µg/ml) do not change miniature end-plate potential amplitude or frequency in either normal or high Mg++-low Ca++ Ringer's solution. These concentrations of GMA do not change the amplitude, quantum size, quatum content, time course or primary potentiation of end-plate potentials recorded from preparations in which neuromuscular transmission is depressed by high Mg++-low Ca++ Ringer's solution. Accordingly, the production of repetitive nerve activity by GMA is not a consequence of increased transmitter release or of intensification or prolongation of transmitter action. GMA apparently represents a new type of neuromuscular reagent in that it profoundly affects neuromuscular function but does not influence neuromuscular transmission, i.e., GMA does not alter the processes involved in transmitter release, action or removal.

Footnotes

    • Received June 28, 1971.
    • Accepted October 11, 1971.
  • © 1972 by The Williams & Wilkins Co.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 180, Issue 2
1 Feb 1972
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Editorial Board (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
THE EFFECTS OF GERMINE-3-ACETATE ON NEUROMUSCULAR TRANSMISSION
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

THE EFFECTS OF GERMINE-3-ACETATE ON NEUROMUSCULAR TRANSMISSION

Peter B. Detwiler
Journal of Pharmacology and Experimental Therapeutics February 1, 1972, 180 (2) 244-254;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

THE EFFECTS OF GERMINE-3-ACETATE ON NEUROMUSCULAR TRANSMISSION

Peter B. Detwiler
Journal of Pharmacology and Experimental Therapeutics February 1, 1972, 180 (2) 244-254;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • PST3093 Stimulates SERCA2a and Improves Cardiac Function
  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Discriminative Stimulus Effects of Zolpidem in Squirrel Monkeys: Comparison with Conventional Benzodiazepines and Sedative-Hypnotics
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics