Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

EFFECTS OF CHLORPROMAZINE, PHENOXYBENZAMINE, DIBENAMINE AND CALCIUM ON ELECTRICAL AND MECHANICAL RESPONSES TO POTASSIUM IN GUINEA-PIG TAENIA COLI

JERRY M. FRANKENHEIM and SHOJI SHIBATA
Journal of Pharmacology and Experimental Therapeutics September 1968, 163 (1) 17-24;
JERRY M. FRANKENHEIM
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SHOJI SHIBATA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Using the sucrosegap technique, the effects of chlorpromazine (10-5 M), phenoxybenzamine (10-4 M) and Dibenamine (10-4 M) on the mechanical and electrical responses to potassium have been investigated. The mechanical response to potassium was inhibited before the electrical response was affected by these agents. The inhibition of mechanical response did not occur in high calcium medium. Mechanical and electrical responses to acetylcholine were inhibited by chlorpromazine, phenoxybenzamine and Dibenamine in normal or high calcium media. These results suggest that potassium contracture involves calcium and that chlorpromazine, phenoxybenzamine and Dibenamine compete with calcium.

Footnotes

    • Received October 18, 1967.
    • Accepted April 12, 1968.
  • © 1968, by The Williams & Wilkins Company

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 163, Issue 1
1 Sep 1968
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
EFFECTS OF CHLORPROMAZINE, PHENOXYBENZAMINE, DIBENAMINE AND CALCIUM ON ELECTRICAL AND MECHANICAL RESPONSES TO POTASSIUM IN GUINEA-PIG TAENIA COLI
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

EFFECTS OF CHLORPROMAZINE, PHENOXYBENZAMINE, DIBENAMINE AND CALCIUM ON ELECTRICAL AND MECHANICAL RESPONSES TO POTASSIUM IN GUINEA-PIG TAENIA COLI

JERRY M. FRANKENHEIM and SHOJI SHIBATA
Journal of Pharmacology and Experimental Therapeutics September 1, 1968, 163 (1) 17-24;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

EFFECTS OF CHLORPROMAZINE, PHENOXYBENZAMINE, DIBENAMINE AND CALCIUM ON ELECTRICAL AND MECHANICAL RESPONSES TO POTASSIUM IN GUINEA-PIG TAENIA COLI

JERRY M. FRANKENHEIM and SHOJI SHIBATA
Journal of Pharmacology and Experimental Therapeutics September 1, 1968, 163 (1) 17-24;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Evidence That Melanocortin 4 Receptor Mediates Hemorrhagic Shock Reversal Caused by Melanocortin Peptides
  • Is Hydroxylamine-Induced Cytotoxicity a Valid Marker for Hypersensitivity Reactions to Sulfamethoxazole in Human Immunodeficiency Virus-Infected Individuals?
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics