CONTENTS ### Number 1, August, 1918 | I. On the Non-influence of Rise in Body Temperature Induced by Drugs upon the Protein Quotient and the Enumeration of White Corpuscles. | | |--|-----| | By Florence McCoy Hill | 1 | | Guinea Pig. By Samuel Amberg and Henry F. Helmholz | 19 | | III. The Acridity of Some Plants Due to a Mechanical Action. By E. D. Brown and D. D. Anderson | 37 | | IV. I. Tonus Waves from the Sino-auricular Muscle Preparation of the
Terrapin as Affected by Adrenalin. By Charles M. Gruber and Casper | | | Markel | 43 | | V. II. Tonus Waves in the Terrapin Auricles as Affected by Pilocarpine,
Atropine and Adrenalin. By Charles M. Gruber and Casper Markel | 53 | | Number 2, September, 1918 | | | VI. The Primary Depression and Secondary Rise in Blood Pressure Caused by Epinephrine. By Hugh McGuigan and Emry G. Hyatt | 59 | | VII. The Effects of Various Agents on Superficial Hemorrhage and the | | | Efficiency of Local Hemostatics. By Paul J. Hanzlik | 71 | | By Paul J. Hanzlik | 119 | | Number 3, October, 1918 | | | IX. Anthelmintics: Their Efficiency as Tested on Earthworms. By Torald | | | Sollmann | 129 | | Bowel. By Walter C. Alvarez | 171 | | XI. The Liberation of the Internal Secretion of the Thyroid Gland into the Blood. By J. M. Rogoff | 102 | | XII. Note on the Preparation of a Soluble Concentrated Product of the | 193 | | Thyroid Gland. By J. M. Rogoff | 207 | | Number 4, November, 1918 | | | XIII. The Application of a Concentrated Solution of Magnesium Sulphate to Scalds and Burns. By S. J. Meltzer | 211 | | XIV. A Transparent Celluloid Renal Oncometer or Plethysmograph. By E. W. Schwartze | 215 | ### CONTENTS | XV. An Experimental Investigation of the Cause of Early Death from Arsphenamine, and of Certain Other Features of the Pharmacological Action of the Substance. By D. E. Jackson and M. I. Smith XVI. The Mode of Action of Certain Stimulants in Increasing and of Certain Depressants in Decreasing Oxidation. By W. E. Burge XVII. Adenine Mononucleotide. By Walter Jones and R. P. Kennedy | 243 | |--|-----| | Number 5, December, 1918 | | | XVIII. On the Pharmacology of the Ureter. VI. Action of Some Optic Isomers. By David I. Macht | 255 | | and Mechanism of Action. By Vernon Lynch, H. W. Smith and E. K. Marshall, Jr | 265 | | XX. On Dichlorethylsulphide (Mustard Gas). II. Variations in Susceptibility of the Skin to Dichlorethylsulphide. By E. K. Marshall, Jr., Vernon Lynch and Homer W. Smith | 291 | | Number 6, January, 1919 | | | XXI. Dichlorethylsulphid (Mustard Gas). I. The Influence of Solvents, Adsorbents and Chemical Antidotes on the Severity of the Human Skin Lesions. By Torald Sollmann | 319 | | Number 7, February, 1919 | | | XXIV. p.Acetyl-Amido-Ethoxy Benzene. By Douglas Cow | 361 | | Number 8, March, 1919 | | | | | | XXVII. An Apparatus for the Administration of Gases and Vapors to Animals. By E. K. Marshall, Jr., and A. C. Kolls | 385 | | mating Small Amounts of the Same. By E. F. Hopkins | | | one miniar organism. By hober in material and cary Eggleston | 100 | # ILLUSTRATIONS | Adrenalin chloride solution, 1: 154,000 (Fig. 1) | 46 | |---|-----| | chloride 1: 150,000 at the point indicated by the arrow (Fig. 2) | 47 | | chloride 1: 154,000 (Fig. 3) | 48 | | Epinephrin 1: 80,000,000 dilution (Fig. 4) | 49 | | Adrenalin chloride 1: 174,000,000 dilution (Fig. 5) | 49 | | Beaker contained 80 cc. of Ringer's solution (Fig. 1) | 54 | | —— contained 85 cc. of Ringer's solution (Fig. 2) | 55 | | contained 80 cc. of Ringer's solution (Fig. 3) | 56 | | Action of adrenalin before and after ligation of the carotids and section | | | of the vagi (Fig. 1) | 61 | | Effect of adrenalin after nicotin, in large doses (Fig. 2) | 64 | | Action of epinephrine before and after section of vagi (Fig. 3) | 65 | | Effect of extra-dural pressure (Fig. 4) | 66 | | of increasing the pressure of cerebrospinal fluid in the fourth ventricle | | | (Fig. 5) | 67 | | Comparison of the hemoglobin and urea-nitrogen content of blood and the | | | effects of different local agents, during the course of hemorrhage from | | | the dog's foot-pad (Fig. 1) | 76 | | Local effect of epinephrin in different concentrations on the course of hem- | | | orrhage from the dog's foot-pad (Fig. 2) | 92 | | Effects of various agents systemically (by intravenous administration) | | | on blood pressure, and hemorrhage from the dog's foot-pad (Fig. 1) | 124 | | Mixed depression and stimulation (Fig. 1) | 173 | | —— depression and stimulation (Fig. 2) | | | depression and stimulation (Fig. 3) | | | Differences in the action of lead acetate on different parts of the bowel | | | (Fig. 4) | 177 | | Dissimilar effects in small intestine and colon (Fig. 5) | 185 | | Depression most pronounced in the jejunum (Fig. 6) | | | Bloods of dog 1 (series I) (Fig. 1) | | | of dog 2 (series I) (Fig. 2) | | | of dog 3 (series I) (Fig. 3) | | | of dog 3 (series II) (Fig. 4) | | | Thyroid lobes of dogs 1, 2 and 3 (series II) (Fig. 5) | 203 | | Controls (series I and II) (Fig. 6) | 204 | | Photomicrograph of sections of thyroid of dogs 1, 2 and 3 (\times 33) (Fig. 7) | 205 | | Product "A" (Kendall) (left); soluble product (Rogoff) (right) (Fig. 1) | 208 | | (Fig. 1) | | | (Fig. 2) | | | View of the two shells (Fig. 1) | 217 | | Cardiometer and blood pressure tracings from a dog (Fig. 1) | 224 | | | | ### ILLUSTRATIONS | Tracing showing the kidney volume, myocardiogram and right carotid | | | | | |--|-----|--|--|--| | blood pressure in a dog of 6.1 kilos injected with 25 cc. of 2 per cent | | | | | | arsphenamine in the form of the monosodium salt (Fig. 2) | 225 | | | | | showing from above down the respiration, spleen volume and carotid | | | | | | blood pressure in a dog which was injected intravenously with 30 cc. of | | | | | | 2 per cent solution of the monosodium salt of arsphenamine (Fig. 3) | 226 | | | | | showing from above down, the kidney volume, right carotid blood | | | | | | pressure and the respiration in a dog injected with 35 cc. of 2 per cent | | | | | | monosodium arsphenamine (Fig. 4) | 228 | | | | | Left pulmonary blood pressure (above) and right carotid tracing (below) | | | | | | (Fig. 5) | 230 | | | | | Pulmonary blood pressure (above) and right carotid tracing (below) (Fig. 6) | 232 | | | | | Death records (mounted together) from two dogs (Fig. 7) | | | | | | Curves showing the percentage decrease produced in the catalase of the | | | | | | blood by the narcotics, and the percentage increase produced by caffein | | | | | | and theobromin (Fig. 1) | 245 | | | | | showing the decrease produced in the catalase of the blood of the liver | | | | | | and of the jugular vein by chloroform and ether and the increase pro- | | | | | | duced by caffein and theobromin (Fig. 2) | 250 | | | | | Pig's ureter (Fig. 1) | | | | | | — ureter (Fig. 2) | | | | | | Ring of pig's ureter (Fig. 3) | | | | | | Pig's ureter (Fig. 4) | | | | | | — ureter (Fig. 5) | | | | | | ureter (Fig. 6) | | | | | | ureter (Fig. 7) | | | | | | — ureter (Fig. 8) | 259 | | | | | — ureter (Fig. 9) | | | | | | — ureter (Fig. 10) | | | | | | — ureter (Fig. 11) | | | | | | — ureter (Fig. 12) | | | | | | — ureter (Fig. 13) | | | | | | — ureter (Fig. 14) | | | | | | (Fig. 1) | | | | | | Detrimental effects of water (vapor tests) (Fig. 1) | | | | | | Protective action of petroleum when dichlorethylsulphide is applied as | | | | | | "splash," and when applied through fabric (Fig. 2) | 308 | | | | | Value of protective oiling (Fig. 3) | | | | | | Comparison of oils (Fig. 4) | | | | | | Protective value of dichloramine-T (Fig. 5) | | | | | | Efficiency of dry powders (Fig. 6) | | | | | | Showing the effect of cocaine hydrochloride on the CO2 output of sciatic | | | | | | nerve of frog (Fig. 1) | 336 | | | | | — the effect of the time of treatment by the drug on the CO ₂ output of | | | | | | sciatic nerve of frog (Fig. 2) | 337 | | | | | Rabbit (Fig. 1) | 348 | | | | | ILLUSTRATIONS | vii | |---|-----| | Cat, urethane, heart movements (downstroke-systole) and blood pressure (Fig. 2) | 354 | | Isolated hearts of rabbits, perfused Langendorff (upstroke-systole) (Fig. 3) Dog, urethane, limb volume, intestinal volume, blood pressure (Fig. 4) | 355 | | Diagram | 387 | | Photograph | | | — of dichlorethylsulphide | | . • . • •