Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

METABOLISM OF PENTAQUINE IN THE RHESUS MONKEY

Carl C. Smith
Journal of Pharmacology and Experimental Therapeutics January 1956, 116 (1) 67-76;
Carl C. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The metabolic disposition of two C14-labeled pentaquine salts has been studied in the rhesus monkey. Following injection of pentaquine labeled in the 6-methoxyl group (Pent-Meo) about 49 per cent of the C14 was excreted as C14O2 in the expired air and about 20 per cent in the urine. When pentaquine labeled with C14 in the terminal isopropyl group (Pent-Iso) was injected, 8 per cent of the C14 appeared in the expired air and about 35 per cent was recovered in the urine. About 1 per cent of the pentaquine was excreted in the urine unchanged while 8 to 9 per cent could be accounted for as urinary metabolites which coupled with diazotized sulfanilic acid.

Three radioactive Pent-Meo metabolites and six radioactive Pent-Iso metabolites could be detected when concentrated butanol extracts of treatment urine were chromatographed on cellulose columns. The distribution patterns of the two groups of metabolites were quite different; two of the Pent-Meo like the parent compound were eluted rapidly from the columns whereas the four major Pent-Iso derivatives moved slowly and could be eluted only with polar solvents such as butanol or water.

These data indicate that pentaquine is degraded rapidly in the monkey with the production of at least six metabolic derivatives. They also show that the methoxyl group at position 6 is cleaved with extreme rapidity, while the terminal isopropyl group is more resistant to oxidation. The implications of these findings are discussed and a scheme is proposed to account for the early stages of penta-quine degradation.

Footnotes

    • Received July 29, 1955.

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 116, Issue 1
1 Jan 1956
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
METABOLISM OF PENTAQUINE IN THE RHESUS MONKEY
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

METABOLISM OF PENTAQUINE IN THE RHESUS MONKEY

Carl C. Smith
Journal of Pharmacology and Experimental Therapeutics January 1, 1956, 116 (1) 67-76;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

METABOLISM OF PENTAQUINE IN THE RHESUS MONKEY

Carl C. Smith
Journal of Pharmacology and Experimental Therapeutics January 1, 1956, 116 (1) 67-76;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • PST3093 Stimulates SERCA2a and Improves Cardiac Function
  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Is Hydroxylamine-Induced Cytotoxicity a Valid Marker for Hypersensitivity Reactions to Sulfamethoxazole in Human Immunodeficiency Virus-Infected Individuals?
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics