Angiotensin II receptors

J Am Soc Nephrol. 1999 Jan:10 Suppl 11:S30-9.

Abstract

This review examines the recent progress in the field of angiotensin receptors. Multiplicity of these receptors was demonstrated initially on the basis of pharmacologic differences and then confirmed by expression cloning. AT1 receptors are predominant in the adult. They are widely distributed and mediate all of the known biologic effects of angiotensin II (AngII) through a variety of signal transduction systems, including activation of phospholipases C and A2, inhibition of adenylate cyclase, opening of calcium channels, and activation of tyrosine kinases. AT2 receptors are predominant in the fetus, but also present in adult tissues such as the adrenals, ovaries, uterus, and brain. AngII via these receptors exerts effects often opposed to those mediated by the AT1 receptors. Signal transduction implicates protein tyrosine phosphatase stimulation. AT1 and AT2 receptor expressions are regulated differently, and regulation is also tissue-specific. AT1 and AT2 receptors have been demonstrated in endothelial cells. Activation of AT1 receptors results in production of vasodilatory agents, nitric oxide, and prostacyclin (PGI2), which counteract the direct vasoconstrictor effects of Ang II on the adjacent smooth muscle cells. AT1 receptors on mesangial cells, smooth muscle cells, and fibroblasts are involved in cell growth and fibrosis, the latter being due both to an increase in the synthesis and a decrease in the degradation of the main components of the extracellular matrix. These AT1 receptor-dependent effects are for the most part indirect and mediated by growth factors, cytokines, and other peptides, including endothelin, transforming growth factor-beta1, and platelet-derived growth factor. AngII is metabolized into active fragments by deletion of the terminal amino acids on both ends. AngIII and AngIV are formed by successive deletions of aspartic acid and arginine at the N terminus. AngII (1-7) is obtained by deletion of phenylalanine at the C terminus. AngIII shares the same receptors and exerts the same effects as AngII. AngIV and AngII (1-7) recognize the AT1 and AT2 receptors with a lesser affinity than AngII and, in addition, possess their own receptors that mediate effects often opposed to those of AngII.

Publication types

  • Review

MeSH terms

  • Angiotensin II / metabolism
  • Angiotensin Receptor Antagonists
  • Animals
  • Benzimidazoles / pharmacology
  • Biphenyl Compounds
  • Endothelium / metabolism
  • Humans
  • Imidazoles / pharmacology
  • Kidney / metabolism
  • Losartan / pharmacology
  • Peptide Fragments / metabolism
  • Pyridines / pharmacology
  • Receptor, Angiotensin, Type 1
  • Receptor, Angiotensin, Type 2
  • Receptors, Angiotensin / classification*
  • Receptors, Angiotensin / drug effects
  • Receptors, Angiotensin / physiology
  • Tetrazoles / pharmacology

Substances

  • Angiotensin Receptor Antagonists
  • Benzimidazoles
  • Biphenyl Compounds
  • Imidazoles
  • Peptide Fragments
  • Pyridines
  • Receptor, Angiotensin, Type 1
  • Receptor, Angiotensin, Type 2
  • Receptors, Angiotensin
  • Tetrazoles
  • Angiotensin II
  • PD 123177
  • PD 123319
  • Losartan
  • candesartan