2-substituted (2SR)-2-amino-2-((1SR,2SR)-2-carboxycycloprop-1-yl)glycines as potent and selective antagonists of group II metabotropic glutamate receptors. 2. Effects of aromatic substitution, pharmacological characterization, and bioavailability

J Med Chem. 1998 Jan 29;41(3):358-78. doi: 10.1021/jm970498o.

Abstract

In this paper we describe the synthesis of a series of alpha-substituted analogues of the potent and selective group II metabotropic glutamate receptor (mGluR) agonist (1S,1'S,2'S)-carboxycyclopropylglycine (2, L-CCG 1). Incorporation of a substitutent on the amino acid carbon converted the agonist 2 into an antagonist. All of the compounds were prepared and tested as a series of four isomers, i.e., two racemic diastereomers. On the basis of the improvement in affinity realized for the alpha-phenylethyl analogue 3, in this paper we explored the effects of substitution on the aromatic ring as a strategy to increase the affinity to these compounds for group II mGluRs. Affinity for group II mGluRs was measured using [3H]glutamic acid (Glu) binding in rat forebrain membranes. Antagonist activity was confirmed for these compounds by measuring their ability to antagonize (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid-induced inhibition of forskolin stimulated cyclic-AMP in RGT cells transfected with human mGluR2 and mGluR3. Meta substitution on the aromatic ring of 3 with a variety of substituents, both electron donating (e.g., methyl, hydroxy, amino, methoxy, phenyl, phenoxy) and electron withdrawing (e.g., fluorine, chlorine, bromine, carboxy, trifluoromethyl) gave from 1.5- to 4.5-fold increases in affinity. Substitution with p-fluorine, as in 97 (IC50 = 0.022 +/- 0.002), was the exception. Here, a greater increase in affinity was realized than for either the ortho- or meta-substituted analogues; 97 was the most potent compound resulting from monosubstitution of the aromatic. At best, only modest increases in affinity were realized for certain compounds bearing either two chlorines or two fluorines, and two methoxy groups gave no improvement in affinity (all examined in a variety of substitution patterns). Three amino acids, 4, 5, and 104, were resolved into their four constituent isomers, and affinity and functional activity for group II mGluRs was found to reside solely in the S,S,S-isomers of each, consistent with 1. With an IC50 = 2.9 +/- 0.6 nM, the resolved xanthylmethyl compound 168 was the most potent compound from this SAR. Amino acid 168 demonstrated high plasma levels following intraperitoneal (i.p.) administration and readily penetrated into the brain. This compound, however, had only limited (approximately 5%) oral bioavailability. Systemic administration of 168 protected mice from limbic seizures produced by the mGluR agonist 3,5-dihydroxyphenylglycine, with an ED50 = 31 mg/kg (i.p., 60 min preinjection). Thus, 168 represents a valuable tool to study the role of group II mGluRs in disease.

MeSH terms

  • Amino Acids / chemistry
  • Animals
  • Anticonvulsants / pharmacology
  • Biological Availability
  • Disease Models, Animal
  • Excitatory Amino Acid Antagonists / pharmacokinetics
  • Excitatory Amino Acid Antagonists / pharmacology*
  • Glycine / analogs & derivatives*
  • Glycine / pharmacokinetics
  • Glycine / pharmacology
  • Humans
  • Limbic System / drug effects
  • Limbic System / physiopathology
  • Male
  • Mice
  • Rats
  • Receptors, Metabotropic Glutamate / antagonists & inhibitors*
  • Seizures / prevention & control
  • Structure-Activity Relationship

Substances

  • Amino Acids
  • Anticonvulsants
  • Excitatory Amino Acid Antagonists
  • Receptors, Metabotropic Glutamate
  • Glycine