Diverse function of aromatase and the N-terminal sequence deleted form

J Steroid Biochem Mol Biol. 1997 Apr;61(3-6):117-26.

Abstract

The diverse function of human placental aromatase including estradiol 6alpha-hydroxylase and cocaine N-demethylase activity are described, and the mechanism for the simultaneous metabolism of estradiol to 2-hydroxy- and 6alpha-hydroxyestradiol at the same active site of aromatase is postulated. Comparison of aromatase activity is also made among the wild type and N-terminal sequence deleted forms of human aromatase which are recombinantly expressed in Escherichia coli. Aromatase cytochrome P450 was reconstituted and incubated with [6alpha,7alpha-(3)H2,4-(14)C]estradiol, 7-ethoxycoumarin, and [N-methyl-(3)H3]cocaine. 6Alpha-hydroxy[7alpha-(3)H,4-(14)C]estradiol was isolated as the metabolite of estradiol and the 3H-water release method based on the 6alpha-3H label was established. The initial rate kinetics of the 6alpha-hydroxylation gave Km of 4.3 microM, Vmax of 4.02 nmol min(-1) mg(-1), and turnover rate of 0.27 min(-1). Testosterone competed dose-dependently with the 6alpha-hydroxylation and showed the Ki of 0.15 microM, suggesting that they occupy the same binding site of aromatase. The deethylation of 7-ethoxycoumarin showed Km of 200 microM, Vmax of 12.5 nmol min(-1) mg(-1) and turnover rate of 1.06 min(-1). The N-demethylation of cocaine was analysed by the 3H-release method, giving Km of 670 microM, Vmax of 4.76 nmol min(-1) mg(-1), and turnover rate of 0.49 min(-1). All activity was dose-responsively suppressed by anti-aromatase P450 monoclonal antibody MAb3-2C2. The N-terminal 38 amino acid residue deleted form of aromatase P450 was expressed in particularly high yield giving a specific activity of 397 +/- 83 pmol min(-1) mg(-1) (n = 12) of crude membrane-bound particulates with a turnover rate of 2.6 min(-1).

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aromatase / chemistry*
  • Aromatase / genetics
  • Aromatase / metabolism
  • Binding Sites / genetics
  • Female
  • Humans
  • Kinetics
  • Placenta / enzymology
  • Pregnancy
  • Protein Conformation
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Sequence Deletion
  • Structure-Activity Relationship

Substances

  • Recombinant Proteins
  • Aromatase