The influence of luminal pH on transport of neutral and charged dipeptides by rat small intestine, in vitro

Biochim Biophys Acta. 1997 Mar 13;1324(2):245-50. doi: 10.1016/s0005-2736(96)00230-1.

Abstract

Four hydrolysis-resistant dipeptides (D-phenylalanyl-L-alanine, D-phenylalanyl-L-glutamine, D-phenylalanyl-L-glutamate and D-phenylalanyl-L-lysine) were synthesized to investigate the effects of net charge on transmural dipeptide transport by isolated jejunal loops of rat small intestine. At a luminal pH of 7.4 and a concentration of 1 mM the two dipeptides with a net charge of -1 and +1 were transported at substantially slower rates (18 +/- 1.3 and 8.4 +/- 1.3 nmol min(-1)(g dry wt.)(-1), respectively) than neutral D-phenylalanyl-L-alanine and D-phenylalanyl-L-glutamine (87 +/- 0.2 and 197 +/- 14 nmol min(-1)(g dry wt.)(-1), respectively). We investigated the effects of luminal pH on dipeptide transport by varying the NaHCO3 content of Krebs Ringer perfusate equilibrated with 95% 02/5% CO2. The pH changes did not affect water transport, but serosal glucose appearance increased significantly at pH 6.8. Transmural transport of D-phenylalanyl-L-alanine and D-phenylalanyl-L-glutamine at pH 6.8 was stimulated (P < 0.01) by 61% and 49%, respectively, whereas the lower pH increased the rate for negatively charged D-phenylalanyl-L-glutamate by 306% (P < 0.01) and decreased that for positively charged D-phenylalanyl-L-lysine by 46% (P < 0.05). Increasing luminal pH to 8.0 inhibited D-phenylalanyl-L-alanine transport by 60%, whereas D-phenylalanyl-L-lysine transport was 60% faster.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Transport
  • Dipeptides / chemical synthesis
  • Dipeptides / metabolism*
  • Glucose / metabolism
  • Hydrogen-Ion Concentration
  • In Vitro Techniques
  • Jejunum / metabolism*
  • Male
  • Rats
  • Rats, Wistar
  • Water-Electrolyte Balance

Substances

  • Dipeptides
  • Glucose