P2-purinoceptor-mediated formation of inositol phosphates and intracellular Ca2+ transients in human coronary artery smooth muscle cells

Br J Pharmacol. 1996 Aug;118(7):1645-52. doi: 10.1111/j.1476-5381.1996.tb15587.x.

Abstract

1. The effects of extracellular adenosine 5'-triphosphate (ATP) on smooth muscles are mediated by a variety of purinoceptors. In this study we addressed the identity of the purinoceptors on smooth muscle cells (SMC) cultured from human large coronary arteries. Purinoceptor-mediated increases in [Ca2+]i were measured in single fura-2 loaded cells by applying a digital imaging technique, and the formation of inositol phosphate compounds was quantified after separation on an anion exchange column. 2. Stimulation of the human coronary artery SMC (HCASMC) with extracellular ATP at concentrations of 0.1-100 microM induced a transient increase in [Ca2+]i from a resting level of 49 +/- 21 nM to a maximum of 436 +/- 19 nM. The effect was dose-dependent with an EC50 value for ATP of 2.2 microM. 3. The rise in [Ca2+]i was independent of the presence of external Ca2+, but was abolished after depletion of intracellular stores by incubation with 100 nM thapsigargin. 4. [Ca2+]i was measured upon stimulation of the cells with 0.1-100 microM of the more specific P2-purinoceptor agonists alpha, beta-methyleneadenosine 5'-triphosphate (alpha,beta-MeATP), 2-methylthioadenosine 5'-triphosphate (2MeSATP) and uridine 5'-triphosphate (UTP). alpha, beta-MeATP was without effect, whereas 2MeSATP and UTP induced release of Ca2+ from internal stores with 2MeSATP being the most potent agonist (EC50 = 0.17 microM), and UTP having a potency similar to ATP. The P1 purinoceptor agonist adenosine (100 microM) did not induce any changes in [Ca2+]i. 5. Stimulation with a submaximal concentration of UTP (10 microM) abolished a subsequent ATP-induced increase in [Ca2+]i, whereas an increase was induced by ATP after stimulation with 10 microM 2MeSATP. 6. The phospholipase C (PLC) inhibitor U73122 (5 microM) abolished the purinoceptor-activated rise in [Ca2+]i, whereas pretreatment with the Gi protein inhibitor pertussis toxin (PTX, 500 ng ml-1) was without effect on ATP-evoked [Ca2+]i increases. 7. Receptor activation with UTP and ATP resulted in formation of inositol phosphates with peak levels of inositol 1, 4, 5-trisphosphate (Ins(1, 4, 5)P3) observed 5-20 s after stimulation. 8. These findings show, that cultured HCASMC express G protein-coupled purinoceptors, which upon stimulation activate PLC to induce enhanced Ins(1, 4, 5)P3 production causing release of Ca2+ from internal stores. Since a release of Ca2+ was induced by 2MeSATP as well as by UTP, the data indicate that P2y- as well as P2U-purinoceptors are expressed by the HCASMC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / analogs & derivatives
  • Adenosine Triphosphate / pharmacology
  • Calcium / metabolism*
  • Cells, Cultured
  • Coronary Vessels / cytology
  • Coronary Vessels / drug effects
  • Coronary Vessels / physiology*
  • Enzyme Activation / drug effects
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Inositol Phosphates / biosynthesis*
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / drug effects
  • Muscle, Smooth, Vascular / physiology*
  • Pertussis Toxin
  • Purinergic P2 Receptor Agonists
  • Purinergic P2 Receptor Antagonists
  • Receptors, Purinergic P2 / physiology*
  • Thapsigargin / pharmacology
  • Type C Phospholipases / antagonists & inhibitors
  • Type C Phospholipases / metabolism
  • Virulence Factors, Bordetella / pharmacology

Substances

  • Enzyme Inhibitors
  • Inositol Phosphates
  • Purinergic P2 Receptor Agonists
  • Purinergic P2 Receptor Antagonists
  • Receptors, Purinergic P2
  • Virulence Factors, Bordetella
  • Thapsigargin
  • Adenosine Triphosphate
  • Pertussis Toxin
  • Type C Phospholipases
  • Calcium