Central nervous system sodium channels are significantly suppressed at clinical concentrations of volatile anesthetics

Anesthesiology. 1996 May;84(5):1223-33; discussion 27A. doi: 10.1097/00000542-199605000-00025.

Abstract

Background: Although voltage-dependent sodium channels have been proposed as possible molecular sites of anesthetic action, they generally are considered too insensitive to be likely molecular targets. However, most previous molecular studies have used peripheral sodium channels as models. To examine the interactions of volatile anesthetics with mammalian central nervous system voltage-gated sodium channels, rat brain IIA sodium channels were expressed in a stably transfected Chinese hamster ovary cell line, and their modification by volatile anesthetics was examined.

Methods: Sodium currents were measured using whole cell patch clamp recordings. Test solutions were equilibrated with the test anesthetics and perfused externally on the cells. Anesthetic concentrations in the perfusion solution were determined by gas chromatography.

Results: All anesthetics significantly suppressed sodium currents at clinical concentrations. This suppression occurred through at least two mechanisms: (1) a potential-independent suppression of resting or open sodium channels, and (2) a hyperpolarizing shift in the voltage-dependence of channel inactivation resulting in a potential-dependent suppression of sodium currents. The voltage-dependent interaction results in IC50 values for anesthetic suppression of sodium channels that are close to clinical concentrations at potentials near the resting membrane potential.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Anesthetics, Inhalation / pharmacology*
  • Animals
  • Brain / drug effects*
  • CHO Cells
  • Cricetinae
  • Dose-Response Relationship, Drug
  • Rats
  • Sodium Channels / drug effects*

Substances

  • Anesthetics, Inhalation
  • Sodium Channels