Endothelium-dependent relaxations mediated by inducible B1 and constitutive B2 kinin receptors in the bovine isolated coronary artery

Br J Pharmacol. 1995 Nov;116(5):2473-81. doi: 10.1111/j.1476-5381.1995.tb15098.x.

Abstract

1. Rings of bovine left anterior descending coronary artery (LAD) were contracted with the thromboxane A2-mimetic, U46619 (1-30 nM), to approximately 40% of their maximum contraction to 125 mM KCl Krebs solution (KPSSmax) for comparison of responses to the B1 and B2 kinin receptor agonists, des-Arg9-bradykinin (des-Arg9-BK) and bradykinin (BK), respectively. Relaxation responses were normalized as percentages of the initial U46619-induced contraction level, while contractile responses were expressed as percentages of KPSSmax. 2. After 6 h of in vitro incubation in Krebs solution at 37 degrees C, des-Arg9-BK (pEC50, 8.00 +/- 0.08; maximum response (Rmax), 93.9 +/- 1.9%) and BK (pEC50, 9.75 +/- 0.07; Rmax, 100.1 +/- 0.7%) caused endothelium-dependent relaxations in precontracted rings of bovine LAD which were competitively and selectively antagonized by the B1 receptor antagonist, des-Arg9-[Leu8]-BK (pA2, 6.27 +/- 0.11) and the B2 receptor antagonist Hoc-140 (pA2, 9.63 +/- 0.14), respectively. 3. At 3 h of in vitro incubation, the sensitivity (pEC50, 7.45 +/- 0.10) and Rmax (84.6 +/- 3.3%) to des-Arg9-BK were significantly less than those obtained in the same tissues at 6 h (pEC50, 7.94 +/- 0.06; Rmax, 91.4 +/- 2.5%), whereas endothelium-dependent relaxations to BK and ACh were unaffected by incubation time. 4. Relaxation responses to des-ARg9-BK, but not BK, at both 3 h and 6 h were significantly attenuated by the protein synthesis inhibitors, cycloheximide (30 and 100 microM) and actinomycin D (2 microM). 5. At 6 h, the nitric oxide (NO) synthase inhibitor, NG-nitro-L-arginine (L-NOARG, 100 microM), caused a significant 2 fold decrease in pEC50 (9.58 +/- 0.03) but had no effect on Rmax for BK. For des-Arg9-BK, L-NOARG (100 microM) caused a marked and significant decrease in both the pEC50 and Rmax and revealed contractions to low concentrations of des-Arg9-BK. In both cases, L-NOARG inhibition was reversed in the presence of L-arginine (10 mM). 6. At 6 h removal of the endothelium abolished relaxation responses to des-Arg9-BK and BK, and for des-Arg9-BK, but not BK, unmasked concentration-dependent contractions (pEC50, 7.57 +/- 0.09; Rmax, 83.4 +/- 9.1%). The sensitivity of contractions to des-Arg9-BK increased slightly from 3 h (pEC50, 7.37 +/- 0.08) to 6 h (pEC50, 7.62 +/- 0.12) of in vitro incubation; however, there was a small but significant depression in the maximum response over this time (Rmax, 126.8 +/- 8.5% and 103.3 +/- 8.6% for 3 h and 6 h of incubation respectively). 7. In conclusion, the bovine LAD contains inducible B1 and constitutive B2 endothelial cell kinin receptors, both of which mediate endothelium-dependent relaxation partly via the release of NO. B1 receptors were also present on the smooth muscle layer of the bovine LAD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholine / pharmacology
  • Animals
  • Anti-Inflammatory Agents, Non-Steroidal / pharmacology
  • Arginine / analogs & derivatives
  • Arginine / pharmacology
  • Bradykinin / analogs & derivatives
  • Bradykinin / pharmacology
  • Bradykinin Receptor Antagonists*
  • Cattle
  • Coronary Vessels / drug effects
  • Coronary Vessels / physiology
  • Endothelium, Vascular / physiology*
  • Enzyme Inhibitors / pharmacology
  • In Vitro Techniques
  • Muscle Contraction / drug effects
  • Muscle Contraction / physiology
  • Muscle Relaxation / drug effects
  • Muscle Relaxation / physiology
  • Muscle, Smooth, Vascular / drug effects
  • Muscle, Smooth, Vascular / physiology*
  • Nitric Oxide Synthase / antagonists & inhibitors
  • Nitroarginine
  • Protein Synthesis Inhibitors / pharmacology

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • Bradykinin Receptor Antagonists
  • Enzyme Inhibitors
  • Protein Synthesis Inhibitors
  • Nitroarginine
  • bradykinin, Leu(8)-des-Arg(9)-
  • icatibant
  • Arginine
  • Nitric Oxide Synthase
  • Acetylcholine
  • Bradykinin