Beta 3-adrenoceptors and intestinal motility

Fundam Clin Pharmacol. 1995;9(4):332-42. doi: 10.1111/j.1472-8206.1995.tb00507.x.

Abstract

Early substantial evidence of the low susceptibility to beta-adrenoceptor antagonists of non alpha-adrenergic responses reducing gut motility and tone was reluctantly accepted as indicating a third beta-receptor subtype different from the beta 1 and beta 2. This applied likewise to lipolysis until new selective "lipolytic" beta-agonists poorly effective at established beta-receptors were introduced. Shortly afterwards these "lipolytic" as well as certain newer and even more selective beta-adrenoceptor agonists were shown to be potent inhibitors of intestinal motility. The latter are the "gut-specific" phenylethanolaminotetralins whose availability as pure isomers attested to the stringent stereochemical requirements for selectivity at non-beta 1, non-beta 2 beta-adrenoceptors. Acceptance of the functionally based concept of a beta 3-adrenoceptor was boosted on structural grounds by molecular biology studies. Sequence analysis indicated the existence in humans and rodents of genes coding for a third subtype of beta-receptor that, when expressed in transfected heterologous cells, had a pharmacological profile distinct from the previously established subtypes. Finally, aryloxypropanolaminotetralins have been prepared as the first selective antagonists of beta 3-adrenoceptors, thus providing unambiguous conclusive evidence of the distinctive functional features of those abundant in the rat colon. The therapeutic potential in gastroenterology of the newer compounds targetable on the beta 3-adrenoceptor is suggested by their potent intestinal action in vivo in animal models without any of the cardiovascular or other unwanted effects of conventional beta-adrenoceptor agonists and antagonists, and by the clinically confirmed importance of beta-adrenergic control of motor function throughout the alimentary canal. However, open questions include the incidence of species-related differences in beta 3-adrenoceptors, and as yet there are no data on gastrointestinal functions in humans under the influence of drugs designed to act selectively at these receptors.

Publication types

  • Review

MeSH terms

  • Adrenergic beta-Agonists / metabolism
  • Adrenergic beta-Agonists / pharmacology*
  • Adrenergic beta-Antagonists / metabolism
  • Adrenergic beta-Antagonists / pharmacology*
  • Animals
  • Binding Sites
  • Colon / drug effects
  • Colon / metabolism
  • Gastrointestinal Motility / drug effects*
  • Gastrointestinal Motility / physiology
  • In Vitro Techniques
  • Rats
  • Receptors, Adrenergic, beta / drug effects*
  • Receptors, Adrenergic, beta / metabolism
  • Receptors, Adrenergic, beta-3
  • Structure-Activity Relationship

Substances

  • Adrenergic beta-Agonists
  • Adrenergic beta-Antagonists
  • Receptors, Adrenergic, beta
  • Receptors, Adrenergic, beta-3