Coupling of muscarinic m1, m2 and m3 acetylcholine receptors, expressed in Chinese hamster ovary cells, to pertussis toxin-sensitive/insensitive guanine nucleotide-binding proteins

Eur J Pharmacol. 1995 Apr 28;289(2):343-51. doi: 10.1016/0922-4106(95)90112-4.

Abstract

Chinese hamster ovary (CHO) cells expressing recombinant human m1 (CHO-m1 cells), m2 (CHO-m2 cells), or m3 (CHO-m3 cells) muscarinic receptors were characterised pharmacologically with [3H]N-methylscopolamine. Agonist-stimulated coupling of these receptors with guanine nucleotide-binding proteins (G proteins) was measured by guanine nucleotide- and pertussis toxin-modification of carbachol competition-binding curves, and pertussis toxin-sensitivity of agonist-stimulated [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) binding, in membrane preparations of the CHO cell clones. High affinity agonist binding and agonist-stimulated [35S]GTP gamma S binding was abolished in CHO-m2 cell membranes (expressing 99 +/- 25 fmol of [3H]N-methylscopolamine binding sites/mg protein) after pertussis toxin pretreatment of cells, suggesting that muscarinic m2 receptors expressed in these cell membranes couple predominantly with pertussis toxin-sensitive G proteins. CHO-m1 (713 +/- 102 fmol/mg protein) and CHO-m3 (1212 +/- 279 fmol/mg protein) cell membranes produced smaller elevations in agonist-stimulated [35S]GTP gamma S binding considering the higher receptor levels, compared with CHO-m2 cell membranes. Pertussis toxin pretreatment of these clones also resulted in a significant attenuation of agonist-stimulated [35S]GTP gamma S binding suggesting that, under these experimental conditions, muscarinic m1 and m3 receptors can couple with both pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. Guanine nucleotide-modification of agonist binding in CHO-m1 and CHO-m3 cell membranes was comparatively smaller than in CHO-m2 cell membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CHO Cells
  • Carbachol / pharmacology
  • Cells, Cultured
  • Cricetinae
  • Dose-Response Relationship, Drug
  • Female
  • GTP-Binding Proteins / metabolism*
  • Gene Expression
  • Ovary / metabolism*
  • Receptors, Muscarinic / genetics
  • Receptors, Muscarinic / metabolism*
  • Scopolamine / pharmacology
  • Transfection
  • Whooping Cough

Substances

  • Receptors, Muscarinic
  • Carbachol
  • Scopolamine
  • GTP-Binding Proteins