Aspects of calcium-activated chloride currents: a neuronal perspective

Pharmacol Ther. 1995 Jun;66(3):535-65. doi: 10.1016/0163-7258(95)00018-c.

Abstract

Ca(2+)-activated Cl- channels are expressed in a variety of cell types, including central and peripheral neurones. These channels are activated by a rise in intracellular Ca2+ close to the cell membrane. This can be evoked by cellular events such as Ca2+ entry through voltage- and ligandgated channels or release of Ca2+ from intracellular stores. Additionally, these Ca(2+)-activated Cl currents (ICl(Ca)) can be activated by raising intracellular Ca2+ through artificial experimental procedures such as intracellular photorelease of Ca2+ from "caged" photolabile compounds (e.g. DM-nitrophen) or by treating cells with Ca2+ ionophores. The potential changes that result from activation of Ca(2+)-activated Cl- channels are dependent on resting membrane potential and the equilibrium potential for Cl-. Ca2+ entry during a single action potential is sufficient to produce substantial after potentials, suggesting that the activity of these Cl- channels can have profound effects on cell excitability. The whole cell ICl(Ca) can be identified by sensitivity to increased Ca2+ buffering capacity of the cell, anion substitution studies and reversal potential measurements, as well as by the actions of Cl- channel blockers. In cultured sensory neurones, there is evidence that the ICl(Ca) deactivates as Ca2+ is buffered or removed from the intracellular environment. To date, there is no evidence in mammalian neurones to suggest these Ca(2+)-sensitive Cl- channels undergo a process of inactivation. Therefore, ICl(Ca) can be used as a physiological index of intracellular Ca2+ close to the cell membrane. The ICl(Ca) has been shown to be activated or prolonged as a result of metabolic stress, as well as by drugs that disturb intracellular Ca2+ homeostatic mechanisms or release Ca2+ from intracellular stores. In addition to sensitivity to classic Cl- channel blockers such as niflumic acid, derivatives of stilbene (4,4'diisothiocyanostilbene-2,2'-disulphonic acid, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid) and benzoic acid (5-nitro 2-(3-phenylpropylamino) benzoic acid), ICl(Ca) are also sensitive to polyamine spider toxins and some of their analogues, particularly those containing the amino acid residue arginine. The physiological role of Ca(2+)-activated Cl- channels in neurones remains to be fully determined. The wide distribution of these channels in the nervous system, and their capacity to underlie a variety of events such as sustained or transient depolarization or hyperpolarizations in response to changes in intracellular Ca2+ and variations in intracellular Cl- concentration, suggest the roles may be subtle, but important.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium / pharmacology
  • Cations, Divalent / pharmacology
  • Cell Membrane / metabolism
  • Chloride Channels / antagonists & inhibitors
  • Chloride Channels / drug effects
  • Chloride Channels / genetics
  • Chloride Channels / metabolism*
  • Electrophysiology
  • Homeostasis / drug effects
  • Humans
  • Neurons / cytology
  • Neurons / drug effects
  • Neurons / metabolism*
  • Polyamines / pharmacology
  • Spider Venoms / pharmacology

Substances

  • Cations, Divalent
  • Chloride Channels
  • Polyamines
  • Spider Venoms
  • Calcium