2-Chloro-N6-[3H]cyclopentyladenosine ([3H]CCPA)--a high affinity agonist radioligand for A1 adenosine receptors

Naunyn Schmiedebergs Arch Pharmacol. 1989 Dec;340(6):679-83. doi: 10.1007/BF00717744.

Abstract

The tritiated analogue of 2-chloro-N6-cyclopentyladenosine (CCPA), an adenosine derivative with subnanomolar affinity and a 10,000-fold selectivity for A1 adenosine receptors, has been examined as a new agonist radioligand. [3H]CCPA was prepared with a specific radioactivity of 1.58 TBq/mmol (43 Ci/mmol) and bound in a reversible manner to A1 receptors from rat brain membranes with a high affinity KD-value of 0.2 nmol/l. In the presence of GTP a KD-value of 13 nmol/l was determined for the low affinity state for agonist binding. Competition of several adenosine receptor agonists and antagonists for [3H]CCPA binding to rat brain membranes confirmed binding to an A1 receptor. Solubilized A1 receptors bound [3H]CCPA with similar affinity for the high affinity state. At solubilized receptors a reduced association rate was observed in the presence of MgCl2, as has been shown for the agonist [3H]N6-phenylisopropyladenosine ([3H]PIA). [3H]CCPA was also used for detection of A1 receptors in rat cardio myocyte membranes, a tissue with a very low receptor density. A KD-value of 0.4 nmol/l and a Bmax-value of 16 fmol/mg protein was determined in these membranes. In human platelet membranes no specific binding of [3H]CCPA was measured at concentrations up to 400 nmol/l, indicating that A2 receptors did not bind [3H]CCPA. Based on the subnanomolar affinity and the high selectivity for A1 receptors [3H]CCPA proved to be a useful agonist radioligand for characterization of A1 adenosine receptors also in tissues with very low receptor density.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine / analogs & derivatives*
  • Adenosine / pharmacology
  • Animals
  • Brain / metabolism
  • Catalysis
  • In Vitro Techniques
  • Isotope Labeling
  • Kinetics
  • Magnetic Resonance Spectroscopy
  • Oxidation-Reduction
  • Rats
  • Receptors, Purinergic / drug effects*

Substances

  • Receptors, Purinergic
  • 2-chloro-N(6)cyclopentyladenosine
  • Adenosine