Structural basis for inhibition of mammalian adenylyl cyclase by calcium

Biochemistry. 2009 Apr 21;48(15):3387-97. doi: 10.1021/bi802122k.

Abstract

Type V and VI mammalian adenylyl cyclases (AC5, AC6) are inhibited by Ca(2+) at both sub- and supramicromolar concentration. This inhibition may provide feedback in situations where cAMP promotes opening of Ca(2+) channels, allowing fine control of cardiac contraction and rhythmicity in cardiac tissue where AC5 and AC6 predominate. Ca(2+) inhibits the soluble AC core composed of the C1 domain of AC5 (VC1) and the C2 domain of AC2 (IIC2). As observed for holo-AC5, inhibition is biphasic, showing "high-affinity" (K(i) = approximately 0.4 microM) and "low-affinity" (K(i) = approximately 100 microM) modes of inhibition. At micromolar concentration, Ca(2+) inhibition is nonexclusive with respect to pyrophosphate (PP(i)), a noncompetitive inhibitor with respect to ATP, but at >100 microM Ca(2+), inhibition appears to be exclusive with respect to PP(i). The 3.0 A resolution structure of Galphas.GTPgammaS/forskolin-activated VC1:IIC2 crystals soaked in the presence of ATPalphaS and 8 microM free Ca(2+) contains a single, loosely coordinated metal ion. ATP soaked into VC1:IIC2 crystals in the presence of 1.5 mM Ca(2+) is not cyclized, and two calcium ions are observed in the 2.9 A resolution structure of the complex. In both of the latter complexes VC1:IIC2 adopts the "open", catalytically inactive conformation characteristic of the apoenzyme, in contrast to the "closed", active conformation seen in the presence of ATP analogues and Mg(2+) or Mn(2+). Structures of the pyrophosphate (PP(i)) complex with 10 mM Mg(2+) (2.8 A) or 2 mM Ca(2+) (2.7 A) also adopt the open conformation, indicating that the closed to open transition occurs after cAMP release. In the latter complexes, Ca(2+) and Mg(2+) bind only to the high-affinity "B" metal site associated with substrate/product stabilization. Ca(2+) thus stabilizes the inactive conformation in both ATP- and PP(i)-bound states.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenylyl Cyclase Inhibitors*
  • Adenylyl Cyclases / biosynthesis
  • Adenylyl Cyclases / chemistry*
  • Animals
  • Binding, Competitive
  • Calcium / chemistry*
  • Calcium / metabolism
  • Calcium / pharmacology
  • Catalysis
  • Cations, Divalent / chemistry
  • Cations, Divalent / pharmacology
  • Cattle
  • Computer Simulation
  • Crystallography, X-Ray
  • Diphosphates / metabolism
  • Dogs
  • Enzyme Activation
  • Enzyme Inhibitors / chemistry*
  • Enzyme Inhibitors / metabolism
  • Enzyme Inhibitors / pharmacology
  • Enzyme Stability
  • Magnesium / metabolism
  • Protein Binding
  • Protein Conformation
  • Rats
  • Thionucleotides / metabolism

Substances

  • Adenylyl Cyclase Inhibitors
  • Cations, Divalent
  • Diphosphates
  • Enzyme Inhibitors
  • Thionucleotides
  • adenosine 5'-(1-thio)triphosphate
  • Adenylyl Cyclases
  • Magnesium
  • Calcium

Associated data

  • PDB/1AZS
  • PDB/1CJK
  • PDB/1CS4
  • PDB/3C14
  • PDB/3C15
  • PDB/3C16
  • PDB/3E8A