Reversible, short-lasting, and dose-dependent effect of (+)-fenfluramine on neocortical serotonergic axons

Brain Res. 1991 May 10;548(1-2):111-25. doi: 10.1016/0006-8993(91)91112-e.

Abstract

Dextrofenfluramine [+)-fenfluramine) is the dextro-optical isomer of the racemic compound (+/-)-fenfluramine. This compound stimulates the release of serotonin (5-HT) and blocks its re-uptake in serotonergic nerve terminals. (+)-Fenfluramine and its nor metabolite which have been localized in significant amounts in the rat brain are useful anorectic agents in animals. In humans, (+)-fenfluramine is used as an anti-obesity agent when administered orally in doses of 0.25 mg/kg/twice a day. Studies in some animal species (such as the rat and monkey, but not mice) using high doses of (+)-fenfluramine (administered subcutaneously) have shown long-term neurochemical and immunocytochemical effects in selected brain regions. In the present study we used the rat to determine the mechanism underlying the anorectic effect of orally administered (+)-fenfluramine. The rat was selected because long-term effects of (+)-fenfluramine have been previously described in this species. In addition, a variety of other aspects of orally administered (+)-fenfluramine have been addressed in this study. For example, how long does the depletion of 5-HT in the nerve terminals last following cessation of the drug treatment? i.e. is the effect reversible? Is this depletion of 5-HT and the resultant abnormal morphology of 5-HT-immunoreactive nerve terminals seen at high doses dose-dependent? Since some of these questions relate to morphological evaluation of this drug in brain 5-HT systems, we have examined this system as part of our ongoing effort to examine brain monoaminergic systems under perturbed conditions. We have used a morphological (immunocytochemical) approach to answer these questions. The primary function of this study was to evaluate the effects of short-term exposure (4 days) to varying doses of orally administered (+)-fenfluramine on 5-HT-immunoreactive nerve terminals in the frontal cortex of the rat. The frontal cortex was selected because it contains a homogeneous population of nerve fibers and terminals unlike other cortical regions, the hippocampus, striatum and the hypothalamus where a mixed population of coarse and fine fibers has been described. Since the previously reported effect of fenfluramine on 5-HT nerve terminals was the appearance of coarse fibers, the region of cortex selected for this study showed no coarse fibers in the pair-fed control. This essential feature of control regions has not been used in previous studies on this subject. The present study demonstrates that (+)-fenfluramine produces a dose-dependent reduction in 5-HT immunoreactivity of 5-HT nerve terminals in the neocortex of adult rats.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Axons / drug effects
  • Axons / physiology*
  • Axons / ultrastructure
  • Brain / drug effects
  • Brain / physiology
  • Cerebral Cortex / drug effects
  • Cerebral Cortex / physiology*
  • Cerebral Cortex / ultrastructure
  • Fenfluramine / pharmacology*
  • Immunohistochemistry
  • Male
  • Nerve Endings / drug effects
  • Nerve Endings / ultrastructure
  • Organ Specificity
  • Rats
  • Rats, Inbred Strains
  • Serotonin / metabolism*
  • Stereoisomerism
  • Tranylcypromine / pharmacology

Substances

  • Fenfluramine
  • Serotonin
  • Tranylcypromine