Pressure-induced retinal ischemia in rats: an experimental model for quantitative study

Ophthalmologica. 1991;203(3):138-47. doi: 10.1159/000310240.

Abstract

The advent of treatment modalities with the potential to ameliorate retinal ischemic injury calls for methods allowing their quantitative assessment. We thus established a model of pressure-induced retinal ischemia/reperfusion injury in rats. The intraocular pressure (IOP) was raised to 110 mm Hg by cannulation of the anterior chamber for a duration of 0, 90 or 120 min. The eyes were reperfused for 3 or 7 days. Morphologically, retinal injury occurred in a pattern consistent with retinal and choroidal vascular occlusion. Damage increased in severity with prolonged durations of ischemia. Morphometric determination of the mean thickness of inner retinal layers (MTIRL) revealed significant differences between controls and the 90- or 120-min ischemia groups (p less than 0.05 and p less than 0.01, respectively). The difference in MTIRL between 3 and 7 days of reperfusion was not significant. Replacement of normal saline by a solution of 5% dextrose in the hydrostatic device used to increase the IOP led to a decrease in retinal injury after 120 min of ischemia (p less than 0.01). This model combines a relatively simple methodology, cost-effective execution and a fast, semicomputerized method of quantitation. Depletion of carbohydrates during ischemia may contribute to retinal injury in this model.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Disease Models, Animal
  • Image Processing, Computer-Assisted
  • Intraocular Pressure*
  • Ischemia / etiology*
  • Ischemia / pathology
  • Ischemia / physiopathology
  • Rats
  • Rats, Inbred Strains
  • Reperfusion Injury / pathology
  • Retinal Vessels / physiopathology*