Hypertonic saline increases vascular permeability in the rat trachea by producing neurogenic inflammation

J Clin Invest. 1990 Jun;85(6):1905-8. doi: 10.1172/JCI114652.

Abstract

In this study, we examined whether inhalation of hypertonic saline aerosols increases vascular permeability in the rat trachea, and we examined the role of neurogenic inflammation in this response. Stereological point counting was performed to measure the percent area occupied by Monastral blue-labeled blood vessels as a means of quantifying the increase in vascular permeability in tracheal whole mounts. Hypertonic saline aerosols (3.6-14.4% NaCl) increased vascular permeability in a dose-dependent fashion compared with 0.9% NaCl. Thus, the area density of Monastral blue-labeled vessels after inhalation of 3.6% NaCl was greater (21.2 +/- 3.5% mean +/- SEM, n = 5) than after 0.9% NaCl aerosol (3.3 +/- 0.9%, n = 5, P less than 0.5). The neutral endopeptidase inhibitor phosphoramidon (2.5 mg/kg, i.v.) significantly potentiated the increase of vascular permeability caused by 3.6% NaCl. Desensitization of sensory nerve endings by pretreatment with capsaicin markedly reduced the usual increase in vascular permeability caused by 3.6% NaCl, but the increase in vascular permeability induced by aerosolized substance P (10(-4) M) was unchanged. These findings suggest that hypertonic saline increases vascular permeability in the rat trachea by stimulating the release of neuropeptides from sensory nerves.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Capillary Permeability / drug effects*
  • Capsaicin / pharmacology
  • Dose-Response Relationship, Drug
  • Glycopeptides / pharmacology
  • In Vitro Techniques
  • Inflammation / chemically induced*
  • Male
  • Neurons, Afferent / physiology
  • Neuropeptides / physiology*
  • Rats
  • Rats, Inbred F344
  • Saline Solution, Hypertonic / pharmacology*
  • Substance P / metabolism
  • Trachea / blood supply*
  • Trachea / drug effects

Substances

  • Glycopeptides
  • Neuropeptides
  • Saline Solution, Hypertonic
  • Substance P
  • Capsaicin
  • phosphoramidon