Stimulation-induced potentiation of T-type Ca2+ channel currents in myocytes from guinea-pig coronary artery

J Physiol. 1991 Nov:443:703-25. doi: 10.1113/jphysiol.1991.sp018859.

Abstract

1. Whole-cell Ca2+ channel currents were studied in myocytes isolated from guinea-pig circumflex coronary artery at 36 degrees C and with 10 mM-Ba2+ (or Ca2+) as charge carrier. With 180 ms clamp steps from the holding potential of -100 mV, currents at -30 mV were carried mostly through the T-type calcium channels while at positive potentials currents were mostly of the L-type. 2. The increase in frequency of pulsing from 0.1 to 2.5 Hz resulted in a reduction of peak inward current ('negative staircase') with the 180 ms pulses to + 10 mV, but in a 2-fold potentiation ('positive staircase') with pulses to -30 mV. T-type currents and their frequency-mediated potentiation did not change significantly when Ba2+ was substituted by Ca2+ or Sr2+. 3. Potentiation of T-type currents was further analysed with a paired-pulse protocol: at a basal frequency of 0.1 Hz, a pre-pulse (inducing current I1) was followed by a 200 ms repolarization to -100 mV and a test pulse (inducing current I2). The potentiation could only be recorded using test pulses depolarizing the membrane to potentials between -40 and -10 mV; at more positive test potentials it was masked by the depressant effect of pre-pulses on the L-type current. 4. Potentiation of I2 by 200 ms pre-pulses started at pre-pulse potentials more positive than -60 mV and saturated at -20 mV (I2 potentiated by a factor 2.4). Between -20 and +130 mV the potentiation was not dependent on the pre-pulse potential suggesting that the influx of Ba2+ or Ca2+ is not required for this effect. Potentiation of I2 by a 10 s pre-pulse followed the voltage dependence of the steady-state inactivation curve of the T-type Ca2+ channel; potentiation became visible at potentials more positive than -80 mV and saturated at about -50 mV. 5. When changing the interval between two identical 200 ms pulses, the T-type current was found to recover completely from inactivation within 40 ms at -100 mV; at intervals of 160-320 ms maximal potentiation of I2 occurred. 6. With pre-pulses shorter than 200 ms, potentiation became attenuated when inactivation became less complete. When the potential during the interval between the pulses was -80 instead of -100 mV, maximal potentiation was reduced (I2 potentiated by a factor of 1.3 instead of 2.2) and occurred later (1.28 s). 7. Potentiated T-type currents inactivated faster.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Barium / physiology
  • Calcium / physiology
  • Calcium Channels / physiology*
  • Coronary Vessels / cytology
  • Electric Stimulation
  • Guinea Pigs
  • Membrane Potentials
  • Muscle, Smooth / physiology*

Substances

  • Calcium Channels
  • Barium
  • Calcium