Liver X receptors alpha and beta regulate renin expression in vivo

J Clin Invest. 2005 Jul;115(7):1913-22. doi: 10.1172/JCI24594.

Abstract

The renin-angiotensin-aldosterone system controls blood pressure and salt-volume homeostasis. Renin, which is the first enzymatic step of the cascade, is critically regulated at the transcriptional level. In the present study, we investigated the role of liver X receptor alpha (LXR(alpha)) and LXR(beta) in the regulation of renin. In vitro, both LXRs could bind to a noncanonical responsive element in the renin promoter and regulated renin transcription. While LXR(alpha) functioned as a cAMP-activated factor, LXR(beta) was inversely affected by cAMP. In vivo, LXRs colocalized in juxtaglomerular cells, in which LXR(alpha) was specifically enriched, and interacted with the renin promoter. In mouse models, renin-angiotensin activation was associated with increased binding of LXR(alpha) to the responsive element. Moreover, acute administration of LXR agonists was followed by upregulation of renin transcription. In LXR(alpha) mice, the elevation of renin triggered by adrenergic stimulation was abolished. Untreated LXR(beta) mice exhibited reduced kidney renin mRNA levels compared with controls. LXR(alpha)LXR(beta) mice showed a combined phenotype of lower basal renin and blunted adrenergic response. In conclusion, we show herein that LXR(alpha) and LXR(beta) regulate renin expression in vivo by directly interacting with the renin promoter and that the cAMP/LXR(alpha) signaling pathway is required for the adrenergic control of the renin-angiotensin system.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Cell Line
  • DNA, Complementary / genetics
  • DNA-Binding Proteins / deficiency
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / physiology*
  • Gene Expression Regulation
  • Liver X Receptors
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mice, Transgenic
  • Orphan Nuclear Receptors
  • Promoter Regions, Genetic
  • Receptors, Cytoplasmic and Nuclear / deficiency
  • Receptors, Cytoplasmic and Nuclear / genetics
  • Receptors, Cytoplasmic and Nuclear / physiology*
  • Renin / genetics*
  • Renin-Angiotensin System / genetics
  • Renin-Angiotensin System / physiology
  • Signal Transduction

Substances

  • DNA, Complementary
  • DNA-Binding Proteins
  • Liver X Receptors
  • Nr1h3 protein, mouse
  • Orphan Nuclear Receptors
  • Receptors, Cytoplasmic and Nuclear
  • Renin