N-Linked glycosylation of the human ABC transporter ABCG2 on asparagine 596 is not essential for expression, transport activity, or trafficking to the plasma membrane

Biochemistry. 2005 Apr 12;44(14):5420-9. doi: 10.1021/bi0479858.

Abstract

The human ATP-binding cassette half-transporter ABCG2 is a 72 kDa plasma membrane protein that can confer multidrug resistance to cells in culture when overexpressed. Both transiently and stably expressed ABCG2 are glycosylated, and treatment with peptide N-glycosidase F reduces the apparent molecular mass on SDS-PAGE gels to approximately 60 kDa. Sequence analysis revealed three potential N-linked glycosylation sites in human ABCG2 at amino acids 418, 557, and 596. Site-directed mutagenesis experiments, in which each Asn was changed to Gln independently, revealed that only asparagine 596 is N-linked glycosylated. These data provide the first direct identification of the modified residue in ABCG2 and evidence for the localization of loop 5 to the extracellular space, previously only predicted from hydropathy analysis. Immunoblot and pulse-chase analyses revealed that the glycosylation-deficient ABCG2 (N596Q) variant and the glycosylated parent transporter are expressed equivalently at steady state and have similar half-lives. Cell surface analysis of ABCG2 expression showed comparable amounts of the N596Q variant present at the plasma membrane compared to the glycosylated ABCG2 protein. The ABCG2 (N596Q) variant is also functional, demonstrating rhodamine 123 transport in intact cells comparable to that in cells expressing glycosylated ABCG2. Furthermore, in crude membrane preparations, neither the basal nor the prazosin-stimulated ( approximately 2-fold) ATPase activities of ABCG2 (N596Q) were affected compared to glycosylated ABCG2. Although subtle defects in transporter trafficking and function may exist, these data taken together suggest that N-glycosylation at arginine 596 is not essential for the expression, trafficking to the plasma membrane, or the overall function of ABCG2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters / chemistry
  • ATP-Binding Cassette Transporters / metabolism*
  • Amino Acid Sequence
  • Asparagine / chemistry
  • Asparagine / metabolism*
  • Glycosylation
  • HeLa Cells
  • Humans
  • Immunoprecipitation
  • Microscopy, Confocal
  • Microscopy, Fluorescence
  • Molecular Sequence Data
  • Neoplasm Proteins / chemistry
  • Neoplasm Proteins / metabolism*
  • Protein Transport
  • Tunicamycin / pharmacology

Substances

  • ABCG2 protein, human
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters
  • Neoplasm Proteins
  • Tunicamycin
  • Asparagine