Benzene metabolism in human lung cell lines BEAS-2B and A549 and cells overexpressing CYP2F1

J Biochem Mol Toxicol. 2004;18(2):92-9. doi: 10.1002/jbt.20010.

Abstract

Benzene is an occupational and environmental toxicant. The main human health concern associated with benzene exposure is leukemia. The toxic effects of benzene are dependent on its metabolism by the cytochrome p450 enzyme system. The cytochrome p450 enzymes CYP2E1 and CYP2F2 are the major contributors to the bioactivation of benzene in rats and mice. Although benzene metabolism has been shown to occur with mouse and human lung microsomal preparations, little is known about the ability of human CYP2F to metabolize benzene or the lung cell types that might activate this toxicant. Our studies compared bronchiolar derived (BEAS-2B) and alveolar derived (A549) human cell lines for benzene metabolizing ability by evaluating the roles of CYP2E1 and CYP2F1. BEAS-2B cells that overexpressed CYP2F1 and recombinant CYP2F1 were also evaluated. BEAS-2B cells overexpressing the enzyme CYP2F1 produced 47.4 +/- 14.7 pmols hydroxylated metabolite/10(6) cells/45 min. The use of the CYP2E1-selective inhibitor diethyldithiocarbamate and the CYP2F2-selective inhibitor 5-phenyl-1-pentyne demonstrated that both CYP2E1 and CYP2F1 are important in benzene metabolism in the BEAS-2B and A549 human lung cell lines. The recombinant expressed human CYP2F1 enzyme had a K(m) value of 3.83 microM and a V(max) value of 0.01 pmol/pmol p450 enzyme/min demonstrating a reasonably efficient catalysis of benzene metabolism (V(max)/K(m) = 2.6). Thus, these studies have demonstrated in human lung cell lines that benzene is bioactivated by two lung-expressed p450 enzymes.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alkynes / pharmacology
  • Benzene / metabolism*
  • Benzene / toxicity
  • Benzene Derivatives / pharmacology
  • Cell Line
  • Cytochrome P-450 CYP2E1 / genetics
  • Cytochrome P-450 CYP2E1 / metabolism
  • Cytochrome P-450 CYP2E1 Inhibitors
  • Cytochrome P-450 Enzyme Inhibitors
  • Cytochrome P-450 Enzyme System / genetics
  • Cytochrome P-450 Enzyme System / metabolism*
  • Cytochrome P450 Family 2
  • Ditiocarb / pharmacology
  • Enzyme Inhibitors / pharmacology
  • Gene Expression
  • Humans
  • Kinetics
  • Lung / cytology
  • Lung / drug effects
  • Lung / metabolism
  • Recombinant Proteins / antagonists & inhibitors
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Transfection

Substances

  • Alkynes
  • Benzene Derivatives
  • Cytochrome P-450 CYP2E1 Inhibitors
  • Cytochrome P-450 Enzyme Inhibitors
  • Enzyme Inhibitors
  • Recombinant Proteins
  • 5-phenyl-1-pentyne
  • Cytochrome P-450 Enzyme System
  • Ditiocarb
  • Cytochrome P-450 CYP2E1
  • CYP2F1 protein, human
  • Cytochrome P450 Family 2
  • Benzene