Differential contributions of NOS isoforms in the rostral ventrolateral medulla to cardiovascular responses associated with mevinphos intoxication in the rat

Neuropharmacology. 2004 Jun;46(8):1184-94. doi: 10.1016/j.neuropharm.2004.01.017.

Abstract

The organophosphate poison mevinphos (Mev) elicits cardiovascular responses via nitric oxide (NO) produced on activation of M2 muscarinic receptors (M2R) in the rostral ventrolateral medulla (RVLM), where sympathetic vasomotor tone originates. This study further evaluated the contribution of nitric oxide synthase (NOS) isoforms at the RVLM to this process, using adult Sprague-Dawley rats. Bilateral co-microinjection into the RVLM of the selective NOS I inhibitor (250 pmol), 7-nitroindazole or N(omega)-propyl-L-arginine antagonized the initial sympathoexcitatory cardiovascular responses to Mev (10 nmol). Co-administration of a selective NOS II inhibitor, N6-(1-iminoethyl)-L-lysine (250 or 500 pmol) further enhanced these cardiovascular responses and reversed the secondary sympathoinhibitory actions of Mev. A potent NOS III inhibitor, N5-(1-iminoethyl)-L-ornithine (46 or 92 nmol) was ineffective. We also found that M2R co-localized only with NOS I- or NOS II-immunoreactive RVLM neurons. Furthermore, only NOS I or II in the ventrolateral medulla exhibited an elevation in mRNA or protein levels during the sympathoexcitatory phase, with further up-regulated synthesis of NOS II during the sympathoinhibitory phase of Mev intoxication. We conclude that whereas NOS III is not engaged, NO produced by NOS I and II in the RVLM plays, respectively, a sympathoexcitatory and sympathoinhibitory role in the cardiovascular responses during Mev intoxication.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Pressure / drug effects*
  • Blood Pressure / physiology
  • Heart Rate / drug effects*
  • Heart Rate / physiology
  • Isoenzymes / physiology
  • Male
  • Medulla Oblongata / drug effects*
  • Medulla Oblongata / enzymology
  • Mevinphos / toxicity*
  • Nitric Oxide Synthase / physiology*
  • Nitric Oxide Synthase Type I
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Isoenzymes
  • Mevinphos
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type I
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Nos1 protein, rat
  • Nos2 protein, rat
  • Nos3 protein, rat