Regulation of nitric oxide and soluble guanylyl cyclase

Brain Res Bull. 2004 Feb 15;62(6):505-15. doi: 10.1016/S0361-9230(03)00102-3.

Abstract

Since the discoveries that have verified nitric oxide (NO) as an endogenously produced cell signaling molecule, research surrounding its production and mechanisms of action have been studied at an exponentially increasing rate. NO is produced by a family of enzymes termed the NO synthases (NOS), which are regulated independently by various stimuli. Once produced, NO can solicit numerous biological events by reacting with various metals, thiols, and oxygen species to modify proteins, DNA and lipids. One of the most biologically relevant actions of NO is its binding to the heme moiety in the heterodimeric enzyme, soluble guanylyl cyclase (sGC). Activation of sGC by NO results in the production of the second messenger molecule, 3',5'-cyclic guanosine monophosphate (cGMP), which can regulate numerous physiological events such as vasodilatation and neurotransmission. Here we will review the synthesis and fate of NO, and discuss the activation and regulation of the NO receptor, sGC.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Guanylate Cyclase
  • Humans
  • Nitric Oxide / metabolism*
  • Receptors, Cytoplasmic and Nuclear / metabolism*
  • Soluble Guanylyl Cyclase

Substances

  • Receptors, Cytoplasmic and Nuclear
  • Nitric Oxide
  • Guanylate Cyclase
  • Soluble Guanylyl Cyclase