Characterisation of a sphingosine 1-phosphate-activated Ca2+ signalling pathway in human neuroblastoma cells

J Neurosci Res. 2003 Jul 15;73(2):215-26. doi: 10.1002/jnr.10636.

Abstract

Sphingosine 1-phosphate (S1P) has assumed great importance within neuroscience research because of putative links between S1P-sensitive Edg receptors and neuroregeneration, cell survival, and alterations in neurite outgrowth. In the present study, we examined the mechanisms by which the endogenous complement of S1P-sensitive human Edg receptors can elevate Ca(2+) in the human neuroblastoma cell line, SH-SY5Y. Reverse transcriptase-polymersase chain reaction (RT-PCR) confirmed the expression of mRNA for Edg 3, 5, and 8 subtypes of S1P-responsive Edg receptors in SH-SY5Y cells. Neither S1P nor the muscarinic agonist methacholine were able to cause a change in SH-SY5Y cell morphology, whereas retinoic acid caused a range of changes, including an increase in neurite outgrowth, under similar test conditions. Stimulation with S1P resulted in a slowly rising increase in cytosolic Ca(2+) levels. These responses were dependent upon inositol-1,4,5-trisphosphate receptors, thapsigargin-sensitive endoplasmic reticulum, and also intact functional mitochondria. S1P-evoked Ca(2+) responses were similar in mechanism to those of methacholine, which activated a much faster responding, larger amplitude Ca(2+) response. These studies indicate that in an endogenous human expression system, S1P appears to be an efficacious agonist of Edg receptors. Despite its slow time course of response, S1P appears to activate the same single Ca(2+) store in SH-SY5Y cells as is activated by methacholine and other G protein coupled receptors.

MeSH terms

  • Calcium Signaling / drug effects*
  • Calcium Signaling / physiology*
  • Dose-Response Relationship, Drug
  • Gene Expression Regulation / drug effects
  • Gene Expression Regulation / physiology
  • Humans
  • Lysophospholipids*
  • Neuroblastoma / metabolism*
  • Neuroblastoma / pathology
  • RNA, Messenger / biosynthesis
  • RNA, Messenger / genetics
  • Receptors, Cell Surface / biosynthesis
  • Receptors, Cell Surface / genetics
  • Receptors, G-Protein-Coupled*
  • Receptors, Lysophospholipid
  • Sphingosine / analogs & derivatives*
  • Sphingosine / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Lysophospholipids
  • RNA, Messenger
  • Receptors, Cell Surface
  • Receptors, G-Protein-Coupled
  • Receptors, Lysophospholipid
  • sphingosine 1-phosphate
  • Sphingosine