Tissue-specific MR contrast agents

Eur J Radiol. 2003 Apr;46(1):33-44. doi: 10.1016/s0720-048x(02)00332-7.

Abstract

The purpose of this review is to outline recent trends in contrast agent development for magnetic resonance imaging. Up to now, small molecular weight gadolinium chelates are the workhorse in contrast enhanced MRI. These first generation MR contrast agents distribute into the intravascular and interstitial space, thus allowing the evaluation of physiological parameters, such as the status or existence of the blood-brain-barrier or the renal function. Shortly after the first clinical use of paramagnetic metallochelates in 1983, compounds were suggested for liver imaging and enhancing a cardiac infarct. Meanwhile, liver specific contrast agents based on gadolinium, manganese or iron become reality. Dedicated blood pool agents will be available within the next years. These gadolinium or iron agents will be beneficial for longer lasting MRA procedures, such as cardiac imaging. Contrast enhanced lymphography after interstitial or intravenous injection will be another major step forward in diagnostic imaging. Metastatic involvement will be seen either after the injection of ultrasmall superparamagnetic iron oxides or dedicated gadolinium chelates. The accumulation of both compound classes is triggered by an uptake into macrophages. It is likely that similar agents will augment MRI of atheriosclerotic plaques, a systemic inflammatory disease of the arterial wall. Thrombus-specific agents based on small gadolinium labeled peptides are on the horizon. It is very obvious that the future of cardiovascular MRI will benefit from the development of new paramagnetic and superparamagnetic substances. The expectations for new tumor-, pathology- or receptor-specific agents are high. However, is not likely that such a compound will be available for daily routine MRI within the next decade.

Publication types

  • Review

MeSH terms

  • Animals
  • Contrast Media* / chemistry
  • Ferric Compounds*
  • Gadolinium*
  • Humans
  • Magnetic Resonance Imaging*
  • Sensitivity and Specificity

Substances

  • Contrast Media
  • Ferric Compounds
  • ferric oxide
  • Gadolinium