MAPKs mediate S phase arrest induced by vanadate through a p53-dependent pathway in mouse epidermal C141 cells

Chem Res Toxicol. 2002 Jul;15(7):950-6. doi: 10.1021/tx0255018.

Abstract

Mitogen-activated protein (MAP) kinases play an important role in mediation of the signal transduction pathway in cellular response to genotoxic stress. Cell growth arrest is considered as an early stage in response to the genotoxic stress. p53 is well-known as a tumor suppression gene involved in both cell growth arrest and apoptosis. The present study investigated the involvement of MAP kinases in vanadate-induced cell growth arrest and the relationship of p53. DNA content analysis showed that vanadate-induced S phase arrest is time- and dose-dependent in p53 wild-type C141 cells but not in p53-deficient C141 cells. Western blotting results indicated that vanadate caused an inactivation of p-cdk2 at Thr160, which is an important kinase for the progression of S phase, and an increase in expression of p21, which is a key for S phase arrest. In p53-deficient cells, vanadate did not induce any observable change in p21 or p-cdk2 level. In addition, vanadate up-regulated phospho-p38 and ERK, two members of MAP kinases. At the same time, vanadate increased the p53 activity as measured by luciferase assay. Addition of PD98059 and SB202190, inhibitors of ERK and p38, respectively, decreased vanadate-induced S phase arrest, reduced p21 levels, restored activation of p-cdk2, and decreased p53 activity. The study demonstrated that vanadate-induced S phase arrest is mediated by both ERK and p38 in a p53-dependent pathway.

MeSH terms

  • Animals
  • Blotting, Western
  • Cell Line
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / pharmacology
  • Epidermal Cells
  • Epidermis / enzymology
  • Luciferases
  • MAP Kinase Signaling System / drug effects*
  • Mice
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinases / metabolism*
  • S Phase / drug effects*
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*
  • Up-Regulation
  • Vanadates / toxicity*
  • p38 Mitogen-Activated Protein Kinases

Substances

  • Enzyme Inhibitors
  • Tumor Suppressor Protein p53
  • Vanadates
  • Luciferases
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases